Optimization with Pattern-Avoiding Input
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375778" target="_blank" >RIV/68407700:21240/24:00375778 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1145/3618260.3649631" target="_blank" >https://doi.org/10.1145/3618260.3649631</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3618260.3649631" target="_blank" >10.1145/3618260.3649631</a>
Alternative languages
Result language
angličtina
Original language name
Optimization with Pattern-Avoiding Input
Original language description
Permutation pattern-avoidance is a central concept of both enumerative and extremal combinatorics. In this paper we study the effect of permutation pattern-avoidance on the complexity of optimization problems. In the context of the dynamic optimality conjecture (Sleator, Tarjan, STOC 1983), Chalermsook, Goswami, Kozma, Mehlhorn, and Saranurak (FOCS 2015) conjectured that the amortized search cost of an optimal binary search tree (BST) is constant whenever the search sequence is pattern-avoiding. The best known bound to date is 2α(n)(1+o(1)) recently obtained by Chalermsook, Pettie, and Yingchareonthawornchai (SODA 2024); here n is the BST size and α(.) the inverse-Ackermann function. In this paper we resolve the conjecture, showing a tight (1) bound. This indicates a barrier to dynamic optimality: any candidate online BST (e.g., splay trees or greedy trees) must match this optimum, but current analysis techniques only give superconstant bounds. More broadly, we argue that the easiness of pattern-avoiding input is a general phenomenon, not limited to BSTs or even to data structures. To illustrate this, we show that when the input avoids an arbitrary, fixed, a priori unknown pattern, one can efficiently compute: (1) a k-server solution of n requests from a unit interval, with total cost n(1/logk), in contrast to the worst-case Θ(n/k) bound, and (2) a traveling salesman tour of n points from a unit box, of length (logn), in contrast to the worst-case Θ(root n) bound; similar results hold for the euclidean minimum spanning tree, Steiner tree, and nearest-neighbor graphs. We show both results to be tight. Our techniques build on the Marcus-Tardos proof of the Stanley-Wilf conjecture, and on the recently emerging concept of twin-width.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
STOC 2024: Proceedings of the 56th Annual ACM Symposium on Theory of Computing
ISBN
979-8-4007-0383-6
ISSN
0737-8017
e-ISSN
—
Number of pages
12
Pages from-to
671-682
Publisher name
Association for Computing Machinery
Place of publication
New York
Event location
Vancouver
Event date
Jun 24, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001254099900063