On the spectrum of a quantum dot with impurityin the Lobachevsky plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F10%3A00164791" target="_blank" >RIV/68407700:21340/10:00164791 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the spectrum of a quantum dot with impurityin the Lobachevsky plane
Original language description
A model of a quantum dot with impurity in the Lobachevsky plane is considered. Relying on explicit formulae for the Green function and the Krein Q-function which have been derived in a previous work we focus on the numerical analysis of the spectrum. Theanalysis is complicated by the fact that the basic formulae are expressed in terms of spheroidal functions with general characteristic exponents. The effect of the curvature on eigenvalues and eigenfunctions is investigated. Moreover, there is given anasymptotic expansion of eigenvalues as the curvature radius tends to infinity (the flat case limit).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F0857" target="_blank" >GA201/05/0857: Application of algebraical and functional analytical methods in mathematical physics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Recent Advances in Operator Theory in Hilbert and Krein Spaces
ISBN
978-3-0346-0179-5
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
—
Publisher name
Birkhäuser Verlag
Place of publication
Basel
Event location
Berlin
Event date
Dec 13, 2007
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—