Generalized discrete orbit function transforms of affine Weyl groups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F14%3A00226565" target="_blank" >RIV/68407700:21340/14:00226565 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4901230" target="_blank" >http://dx.doi.org/10.1063/1.4901230</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4901230" target="_blank" >10.1063/1.4901230</a>
Alternative languages
Result language
angličtina
Original language name
Generalized discrete orbit function transforms of affine Weyl groups
Original language description
The affine Weyl groups with their corresponding four types of orbit functions are considered. Two independent admissible shifts, which preserve the symmetries of the weight and the dual weight lattices, are classified. Finite subsets of the shifted weight and the shifted dual weight lattices, which serve as a sampling grid and a set of labels of the orbit functions, respectively, are introduced. The complete sets of discretely orthogonal orbit functions over the sampling grids are found and the corresponding discrete Fourier transforms are formulated. The eight standard onedimensional discrete cosine and sine transforms form special cases of the presented transforms.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/7AMB13PL035" target="_blank" >7AMB13PL035: New families of special functions of several variables and their properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000345643100035
EID of the result in the Scopus database
—