All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Least informative distributions in maximum q-log-likelihood estimation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F18%3A00322787" target="_blank" >RIV/68407700:21340/18:00322787 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0378437118307283" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378437118307283</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.physa.2018.06.004" target="_blank" >10.1016/j.physa.2018.06.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Least informative distributions in maximum q-log-likelihood estimation

  • Original language description

    We use the maximum q-log-likelihood estimation for Least informative distributions (LIDs) in order to estimate the parameters in probability density functions (PDFs) efficiently and robustly when data include outlier(s). LIDs are derived by using convex combinations of two PDFs. A convex combination of two PDFs is composed of an underlying distribution and a contamination. The optimal criterion is obtained by minimizing the change of maximum q-log-likelihood function when the data contain small amount of contamination. In this paper, we make a comparison between ordinary maximum likelihood estimation, maximum q-log-likelihood estimation (MqLE) and LIDs based on MqLE for parameter estimation from data with outliers. We derive a new Fisher information matrix based on the score function for LID from M-function and use it for choice of optimal estimator in the class of MqLE. The model selection is done by the robust information criteria. We test the methods on the real data with outliers and estimate shape and scale parameters of probability distributions. As a result, we show that the LIDs based on MqLE provide the most robust and efficient estimation of the model parameters.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GF17-33812L" target="_blank" >GF17-33812L: An information-theoretical perspective on complex systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physica A: Statistical Mechanics and Its Applications

  • ISSN

    0378-4371

  • e-ISSN

    1873-2119

  • Volume of the periodical

    509

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    140-150

  • UT code for WoS article

    000441492100012

  • EID of the result in the Scopus database

    2-s2.0-85048778152