Central Splitting of A(2) Discrete Fourier-Weyl Transforms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F20%3A00346595" target="_blank" >RIV/68407700:21340/20:00346595 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.3390/sym12111828" target="_blank" >https://doi.org/10.3390/sym12111828</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym12111828" target="_blank" >10.3390/sym12111828</a>
Alternative languages
Result language
angličtina
Original language name
Central Splitting of A(2) Discrete Fourier-Weyl Transforms
Original language description
Two types of bivariate discrete weight lattice Fourier-Weyl transforms are related by the central splitting decomposition. The two-variable symmetric and antisymmetric Weyl orbit functions of the crystallographic reflection group A2 constitute the kernels of the considered transforms. The central splitting of any function carrying the data into a sum of components governed by the number of elements of the center of A2 is employed to reduce the original weight lattice Fourier-Weyl transform into the corresponding weight lattice splitting transforms. The weight lattice elements intersecting with one-third of the fundamental region of the affine Weyl group determine the point set of the splitting transforms. The unitary matrix decompositions of the normalized weight lattice Fourier-Weyl transforms are presented. The interpolating behavior and the unitary transform matrices of the weight lattice splitting Fourier-Weyl transforms are exemplified.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Volume of the periodical
12
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
—
UT code for WoS article
000593768200001
EID of the result in the Scopus database
2-s2.0-85096214403