Quantum Particle on Lattices in Weyl Alcoves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00382161" target="_blank" >RIV/68407700:21340/23:00382161 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-981-19-4751-3_48" target="_blank" >https://doi.org/10.1007/978-981-19-4751-3_48</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-19-4751-3_48" target="_blank" >10.1007/978-981-19-4751-3_48</a>
Alternative languages
Result language
angličtina
Original language name
Quantum Particle on Lattices in Weyl Alcoves
Original language description
The application of the generalized discrete Fourier–Weyl transforms to a quantum particle propagation on the lattice fragments inside Weyl alcoves is summarized. The rescaled dual weight and dual root lattices intersected with the signed fundamental domains of the affine Weyl groups induce the position bases of the associated Hilbert spaces. The generalized dual-weight and dual-root Fourier–Weyl transforms provide unitary transition matrices between the position and momentum bases. The vectors of the momentum bases satisfy the time-independent Schrödinger equations and the corresponding eigenenergies are determined as sums of the symmetric Weyl orbit functions. The matrix forms of the Hamiltonians together with the eigenenergies of the A3 dual-weight lattice model are exemplified.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA19-19535S" target="_blank" >GA19-19535S: Fourier methods of special functions of affine Weyl groups</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lie Theory and Its Applications in Physics
ISBN
978-981-19-4750-6
ISSN
2194-1009
e-ISSN
—
Number of pages
7
Pages from-to
501-507
Publisher name
Springer Nature Singapore Pte Ltd.
Place of publication
—
Event location
Sofia
Event date
Jun 20, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—