All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectral enclosures and stability for non-self-adjoint discrete Schrödinger operators on the half-line

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F22%3A00362621" target="_blank" >RIV/68407700:21340/22:00362621 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1112/blms.12700" target="_blank" >https://doi.org/10.1112/blms.12700</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12700" target="_blank" >10.1112/blms.12700</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectral enclosures and stability for non-self-adjoint discrete Schrödinger operators on the half-line

  • Original language description

    We make a spectral analysis of discrete Schrödinger operators on the half-line, subject to complex Robin-type boundary couplings and complex-valued potentials. First, optimal spectral enclosures are obtained for summable potentials. Second, general smallness conditions on the potentials guaranteeing a spectral stability are established. Third, a general identity which allows to generate optimal discrete Hardy inequalities for the discrete Dirichlet Laplacian on the half-line is proved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX20-17749X" target="_blank" >GX20-17749X: New challenges for spectral theory: geometry, advanced materials and complex fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    25

  • Pages from-to

    2379-2403

  • UT code for WoS article

    000817792500001

  • EID of the result in the Scopus database

    2-s2.0-85132935454