Intrinsic Elastic Anisotropy of Westerly Granite Observed by Ultrasound Measurements, Microstructural Investigations, and Neutron Diffraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00007064%3AK01__%2F20%3AN0000065" target="_blank" >RIV/00007064:K01__/20:N0000065 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985831:_____/21:00555174
Výsledek na webu
<a href="https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JB020878" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020JB020878</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1029/2020JB020878" target="_blank" >10.1029/2020JB020878</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intrinsic Elastic Anisotropy of Westerly Granite Observed by Ultrasound Measurements, Microstructural Investigations, and Neutron Diffraction
Popis výsledku v původním jazyce
Westerly granite (WG) has been generally accepted as an isotropic homogeneous rock. Here, we return to WG and observe significant elastic anisotropy using multidirectional ultrasonic sounding on spherical samples at pressures up to 400 MPa. Thermal treatment of WG leads to formation of microcracks that reduce elastic wave velocities and increase its elastic anisotropy. The 3D distribution of P-wave velocities at low pressure is close to orthorhombic symmetry. Application of hydrostatic pressure closes most of thermally induced microcracks and decreases elastic anisotropy of WG, but at high pressure the anisotropy is practically reversed compared to low pressure: maximum P-wave velocity direction at low pressures is near minimum velocity direction at high pressure and vice versa. To understand this effect, microstructures of the rock were investigated by optical and scanning electron microscopy. Preferred orientations of four major rock-forming minerals-quartz, orthoclase, plagioclase, and biotite-were measured by time-of-flight neutron diffraction, which confirms significant crystal alignment. All these data were used to numerically model anisotropic elastic properties of WG. It is shown that WG possesses weak intrinsic elastic anisotropy related mainly to the preferred orientation of feldspars formed during igneous crystallization. Observed microcracks are mostly related to the cleavage planes of feldspars and biotite, and thus also demonstrate preferred orientation. Higher preheating temperatures produce larger quantity of longer microcracks. A numerical model shows that these microcracks act against the weak intrinsic elastic anisotropy of WG, and define the elastic anisotropy at low pressures.
Název v anglickém jazyce
Intrinsic Elastic Anisotropy of Westerly Granite Observed by Ultrasound Measurements, Microstructural Investigations, and Neutron Diffraction
Popis výsledku anglicky
Westerly granite (WG) has been generally accepted as an isotropic homogeneous rock. Here, we return to WG and observe significant elastic anisotropy using multidirectional ultrasonic sounding on spherical samples at pressures up to 400 MPa. Thermal treatment of WG leads to formation of microcracks that reduce elastic wave velocities and increase its elastic anisotropy. The 3D distribution of P-wave velocities at low pressure is close to orthorhombic symmetry. Application of hydrostatic pressure closes most of thermally induced microcracks and decreases elastic anisotropy of WG, but at high pressure the anisotropy is practically reversed compared to low pressure: maximum P-wave velocity direction at low pressures is near minimum velocity direction at high pressure and vice versa. To understand this effect, microstructures of the rock were investigated by optical and scanning electron microscopy. Preferred orientations of four major rock-forming minerals-quartz, orthoclase, plagioclase, and biotite-were measured by time-of-flight neutron diffraction, which confirms significant crystal alignment. All these data were used to numerically model anisotropic elastic properties of WG. It is shown that WG possesses weak intrinsic elastic anisotropy related mainly to the preferred orientation of feldspars formed during igneous crystallization. Observed microcracks are mostly related to the cleavage planes of feldspars and biotite, and thus also demonstrate preferred orientation. Higher preheating temperatures produce larger quantity of longer microcracks. A numerical model shows that these microcracks act against the weak intrinsic elastic anisotropy of WG, and define the elastic anisotropy at low pressures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
ISSN
2169-9313
e-ISSN
2169-9356
Svazek periodika
126
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
000617378900001
EID výsledku v databázi Scopus
2-s2.0-85099990828