Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F16%3AN0000007" target="_blank" >RIV/00020699:_____/16:N0000007 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.mhwm.pl/Maximum-daily-rainfall-analysis-at-selected-meteorological-stations-in-the-upper-Lusatian-Neisse-River-basin,0,40.html" target="_blank" >http://www.mhwm.pl/Maximum-daily-rainfall-analysis-at-selected-meteorological-stations-in-the-upper-Lusatian-Neisse-River-basin,0,40.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin

  • Popis výsledku v původním jazyce

    The scope of this study was to assess the usefulness of top probability distributions to describe maximum rainfall data in the Lusatian Neisse River basin, based on eight IMWM-NRI meteorological stations. The research material was composed of 50-year precipitation series of daily totals from 1961 to 2010. Measurement data series were supplemented using weighted average method. Homogeneity for refilled data were investigated by precipitation double aggregation curve. Correlation between the measurement data varied from 96 to 99% and did not indicate a disorder in the homogeneity of rainfall data series. Variability of recorded daily precipitation maxima were studied by linear regression and non-parametric Mann-Kendalls test. Long-term period changes at maximum rainfalls for four station remained as statistically insignificant, and for other four were significant, although the structure of maximums were relatively similar. To describe the measured data, there were used the Fréchet, Gamma, Generalized Exponential Distribution (GED), Gumbel, Log-normal and Weibull distributions. Particular distribution parameters were estimated using the maximum likelihood method. The conformity of the analyzed theoretical distributions with measured data was inspected using the Schwarz Bayesian information criterion (BIC) and also by the relative residual mean square error (RRMSE). Among others, the Gamma, GED, and Weibull distributions fulfilled the compliance criterion for each meteorological station respectively. The BIC criterion indicated GED as the best; however differences were minor between GED on the one hand and the Gamma and Weibull distributions on the other. After the conduction of the RRMSE analysis it was found that, in comparison to the other distributions, GED best describes the measured maximum rainfall data.

  • Název v anglickém jazyce

    Maximum daily rainfall analysis at selected meteorological stations in the upper Lusatian Neisse River basin

  • Popis výsledku anglicky

    The scope of this study was to assess the usefulness of top probability distributions to describe maximum rainfall data in the Lusatian Neisse River basin, based on eight IMWM-NRI meteorological stations. The research material was composed of 50-year precipitation series of daily totals from 1961 to 2010. Measurement data series were supplemented using weighted average method. Homogeneity for refilled data were investigated by precipitation double aggregation curve. Correlation between the measurement data varied from 96 to 99% and did not indicate a disorder in the homogeneity of rainfall data series. Variability of recorded daily precipitation maxima were studied by linear regression and non-parametric Mann-Kendalls test. Long-term period changes at maximum rainfalls for four station remained as statistically insignificant, and for other four were significant, although the structure of maximums were relatively similar. To describe the measured data, there were used the Fréchet, Gamma, Generalized Exponential Distribution (GED), Gumbel, Log-normal and Weibull distributions. Particular distribution parameters were estimated using the maximum likelihood method. The conformity of the analyzed theoretical distributions with measured data was inspected using the Schwarz Bayesian information criterion (BIC) and also by the relative residual mean square error (RRMSE). Among others, the Gamma, GED, and Weibull distributions fulfilled the compliance criterion for each meteorological station respectively. The BIC criterion indicated GED as the best; however differences were minor between GED on the one hand and the Gamma and Weibull distributions on the other. After the conduction of the RRMSE analysis it was found that, in comparison to the other distributions, GED best describes the measured maximum rainfall data.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    DA - Hydrologie a limnologie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Meteorology Hydrology and Water Management

  • ISSN

    2299-3835

  • e-ISSN

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    11

  • Strana od-do

    53-63

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus