Algoritm Theoretical Basis Document – Data fusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F17%3AN0000152" target="_blank" >RIV/00020699:_____/17:N0000152 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algoritm Theoretical Basis Document – Data fusion
Popis výsledku v původním jazyce
This document provides a theoretical description of the data fusion methodology and its uncertainty estimates used within the SAMIRA project https://samira.nilu.no/, which aims to improve air quality assessment through synergetic use of data from satellites, in situ air quality monitoring networks and output from chemical transport models. Data fusion is a technique for combining two or more datasets in an objective, mathematically meaningful way, in order to obtain a new dataset which has superior properties to any of the input datasets. Data fusion is a subset of data assimilation methods in a wider sense. One of the often used data fusion methods is residual kriging. In the residual kriging, monitoring, modelling and other supplementary data are combined in multiple linear regression and subsequent spatial interpolation of its residuals by ordinary kriging (residual kriging).
Název v anglickém jazyce
Algoritm Theoretical Basis Document – Data fusion
Popis výsledku anglicky
This document provides a theoretical description of the data fusion methodology and its uncertainty estimates used within the SAMIRA project https://samira.nilu.no/, which aims to improve air quality assessment through synergetic use of data from satellites, in situ air quality monitoring networks and output from chemical transport models. Data fusion is a technique for combining two or more datasets in an objective, mathematically meaningful way, in order to obtain a new dataset which has superior properties to any of the input datasets. Data fusion is a subset of data assimilation methods in a wider sense. One of the often used data fusion methods is residual kriging. In the residual kriging, monitoring, modelling and other supplementary data are combined in multiple linear regression and subsequent spatial interpolation of its residuals by ordinary kriging (residual kriging).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů