Possibilities of using neural networks for data preprocessing in models predicting flash floods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00020699%3A_____%2F21%3AN0000045" target="_blank" >RIV/00020699:_____/21:N0000045 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Possibilities of using neural networks for data preprocessing in models predicting flash floods
Popis výsledku v původním jazyce
In the article are studied possibilities of preprocessing of the radar values using methods artificial intelligence (neural network). For this study were chosen 229 meteorological stations. The data from these stations are compared with mean values of radar data. The neural networks are trained on historical episodes (2016-2019) and whole model is tested on validation period, which it was chosen year 2020. The preprocessed data and were given to model for forecasting of flash flood danger and results of both inputs were compared. Preprocessed rainfall data significantly lowered number of fake alarms, but slightly increased number of missed dangerous events. Results of neural networks model were good enough for another continuation of this applications. Where should be find some problematic issues with the neural network application as preprocessing tool for this application.
Název v anglickém jazyce
Possibilities of using neural networks for data preprocessing in models predicting flash floods
Popis výsledku anglicky
In the article are studied possibilities of preprocessing of the radar values using methods artificial intelligence (neural network). For this study were chosen 229 meteorological stations. The data from these stations are compared with mean values of radar data. The neural networks are trained on historical episodes (2016-2019) and whole model is tested on validation period, which it was chosen year 2020. The preprocessed data and were given to model for forecasting of flash flood danger and results of both inputs were compared. Preprocessed rainfall data significantly lowered number of fake alarms, but slightly increased number of missed dangerous events. Results of neural networks model were good enough for another continuation of this applications. Where should be find some problematic issues with the neural network application as preprocessing tool for this application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10501 - Hydrology
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20192021166" target="_blank" >VI20192021166: Hydrometeorologická rizika v České republice - změny rizik a zlepšení jejich predikcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
XXIX Danube Conference - XXIX Conference of the Danubian Countries on Hydrological Forecasting and Hydrological Bases of Water Management - Conference proceedings - Extended abstracts
ISBN
978-80-7653-017-1
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
73-74
Název nakladatele
Czech Hydrometeorological Institute
Místo vydání
Praha
Místo konání akce
Brno
Datum konání akce
6. 9. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—