Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F16%3A00060077" target="_blank" >RIV/00023001:_____/16:00060077 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11120/16:43912059 RIV/00023752:_____/16:43915263
Výsledek na webu
<a href="https://doi.org/10.1017/S0033291716000878" target="_blank" >https://doi.org/10.1017/S0033291716000878</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0033291716000878" target="_blank" >10.1017/S0033291716000878</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study
Popis výsledku v původním jazyce
Background Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these between-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses, such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to differentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on resting-state functional connectivity (rsFC). Method We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default mode network, the salience network and the central executive network. Results The SVM applied to the rsFC within the salience network distinguished the FES from the control participants with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within the default mode or the central executive networks did not yield classification accuracies above chance level. Conclusions Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or medications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/salience network in the pathophysiology of FES.
Název v anglickém jazyce
Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study
Popis výsledku anglicky
Background Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these between-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses, such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to differentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on resting-state functional connectivity (rsFC). Method We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default mode network, the salience network and the central executive network. Results The SVM applied to the rsFC within the salience network distinguished the FES from the control participants with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within the default mode or the central executive networks did not yield classification accuracies above chance level. Conclusions Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or medications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/salience network in the pathophysiology of FES.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FH - Neurologie, neurochirurgie, neurovědy
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NV16-32696A" target="_blank" >NV16-32696A: Využití strojového učení v analýze dat z magnetické rezonance za účelem zlepšení časné diagnostiky schizofrenie a bipolární poruchy</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Psychological Medicine
ISSN
0033-2917
e-ISSN
—
Svazek periodika
46
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
2695-2704
Kód UT WoS článku
000385358000002
EID výsledku v databázi Scopus
—