Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F16%3A00060077" target="_blank" >RIV/00023001:_____/16:00060077 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11120/16:43912059 RIV/00023752:_____/16:43915263

  • Výsledek na webu

    <a href="https://doi.org/10.1017/S0033291716000878" target="_blank" >https://doi.org/10.1017/S0033291716000878</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0033291716000878" target="_blank" >10.1017/S0033291716000878</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study

  • Popis výsledku v původním jazyce

    Background Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these between-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses, such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to differentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on resting-state functional connectivity (rsFC). Method We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default mode network, the salience network and the central executive network. Results The SVM applied to the rsFC within the salience network distinguished the FES from the control participants with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within the default mode or the central executive networks did not yield classification accuracies above chance level. Conclusions Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or medications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/salience network in the pathophysiology of FES.

  • Název v anglickém jazyce

    Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine-learning study

  • Popis výsledku anglicky

    Background Early diagnosis of schizophrenia could improve the outcomes and limit the negative effects of untreated illness. Although participants with schizophrenia show aberrant functional connectivity in brain networks, these between-group differences have a limited diagnostic utility. Novel methods of magnetic resonance imaging (MRI) analyses, such as machine learning (ML), may help bring neuroimaging from the bench to the bedside. Here, we used ML to differentiate participants with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls based on resting-state functional connectivity (rsFC). Method We acquired resting-state functional MRI data from 63 patients with FES who were individually matched by age and sex to 63 healthy controls. We applied linear kernel support vector machines (SVM) to rsFC within the default mode network, the salience network and the central executive network. Results The SVM applied to the rsFC within the salience network distinguished the FES from the control participants with an accuracy of 73.0% (p = 0.001), specificity of 71.4% and sensitivity of 74.6%. The classification accuracy was not significantly affected by medication dose, or by the presence of psychotic symptoms. The functional connectivity within the default mode or the central executive networks did not yield classification accuracies above chance level. Conclusions Seed-based functional connectivity maps can be utilized for diagnostic classification, even early in the course of schizophrenia. The classification was probably based on trait rather than state markers, as symptoms or medications were not significantly associated with classification accuracy. Our results support the role of the anterior insula/salience network in the pathophysiology of FES.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    FH - Neurologie, neurochirurgie, neurovědy

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NV16-32696A" target="_blank" >NV16-32696A: Využití strojového učení v analýze dat z magnetické rezonance za účelem zlepšení časné diagnostiky schizofrenie a bipolární poruchy</a><br>

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Psychological Medicine

  • ISSN

    0033-2917

  • e-ISSN

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    13

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    2695-2704

  • Kód UT WoS článku

    000385358000002

  • EID výsledku v databázi Scopus