Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F18%3A43919380" target="_blank" >RIV/00023752:_____/18:43919380 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/18:00490053 RIV/00216208:11120/18:43916642 RIV/00023001:_____/18:00076893
Výsledek na webu
<a href="https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-018-1678-y" target="_blank" >https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-018-1678-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12888-018-1678-y" target="_blank" >10.1186/s12888-018-1678-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy
Popis výsledku v původním jazyce
Background: Early diagnosis of schizophrenia could improve the outcome of the illness. Unlike classical between-group comparisons, machine learning can identify subtle disease patterns on a single subject level, which could help realize the potential of MRI in establishing a psychiatric diagnosis. Machine learning has previously been predominantly tested on gray-matter structural or functional MRI data. In this paper we used a machine learning classifier to differentiate patients with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls using diffusion tensor imaging.Methods: We applied linear support-vector machine (SVM) and traditional tract based spatial statistics between group analyses to brain fractional anisotropy (FA) data from 77 FES and 77 age and sex matched healthy controls. We also evaluated the effects of medication and symptoms on the SVM classification. Results: The SVM distinguished between patients and controls with significant accuracy of 62.34% (p = 0.005). Participants with FES showed widespread FA reductions relative to controls in a large cluster (N = 56,647 voxels, corrected p = 0.002). The white matter regions, which contributed to the correct identification of participants with FES, overlapped with the regions, which showed lower FA in patients relative to controls. There was no association between the classification performance and medication or symptoms. Conclusions: Our results provide a proof of concept that SVM might help differentiate FES patients early in the course of illness from healthy controls using white-matter fractional anisotropy. As there was no effect of medications or symptoms, the SVM classification seemed to be based on trait rather than state markers and appeared to capture the lower FA in FES participants relative to controls.
Název v anglickém jazyce
Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy
Popis výsledku anglicky
Background: Early diagnosis of schizophrenia could improve the outcome of the illness. Unlike classical between-group comparisons, machine learning can identify subtle disease patterns on a single subject level, which could help realize the potential of MRI in establishing a psychiatric diagnosis. Machine learning has previously been predominantly tested on gray-matter structural or functional MRI data. In this paper we used a machine learning classifier to differentiate patients with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls using diffusion tensor imaging.Methods: We applied linear support-vector machine (SVM) and traditional tract based spatial statistics between group analyses to brain fractional anisotropy (FA) data from 77 FES and 77 age and sex matched healthy controls. We also evaluated the effects of medication and symptoms on the SVM classification. Results: The SVM distinguished between patients and controls with significant accuracy of 62.34% (p = 0.005). Participants with FES showed widespread FA reductions relative to controls in a large cluster (N = 56,647 voxels, corrected p = 0.002). The white matter regions, which contributed to the correct identification of participants with FES, overlapped with the regions, which showed lower FA in patients relative to controls. There was no association between the classification performance and medication or symptoms. Conclusions: Our results provide a proof of concept that SVM might help differentiate FES patients early in the course of illness from healthy controls using white-matter fractional anisotropy. As there was no effect of medications or symptoms, the SVM classification seemed to be based on trait rather than state markers and appeared to capture the lower FA in FES participants relative to controls.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30215 - Psychiatry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BMC Psychiatry
ISSN
1471-244X
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
Article Number: 97
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
1-7
Kód UT WoS článku
000429938400006
EID výsledku v databázi Scopus
2-s2.0-85045269051