Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F22%3A00082531" target="_blank" >RIV/00023001:_____/22:00082531 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009638" target="_blank" >https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009638</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pgen.1009638" target="_blank" >10.1371/journal.pgen.1009638</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose

  • Popis výsledku v původním jazyce

    Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2(+/-) mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia. Author summaryMetabolic and neurological disorders are often comorbid, suggesting that biological pathways which orchestrate peripheral homeostasis and the integrity of the nervous system intersect. The genetic architecture behind these relationships is still poorly described, in part because molecular processes in the human brain are very difficult to study. We thus used a rodent genetic reference population to investigate links between adult hippocampal neurogenesis-a cellular plasticity mechanism important for learning flexibility-and metabolism. We measured adult neurogenesis in the family of 30 HXB/BXH rat recombinant inbred strains, who are characterised by stable differences in metabolism, behaviour, and gene expression levels.Because DNA variants affecting distinct traits segregated into different members of the family, it was possible to determine which of the previously published phenotypes correlated to adult neurogenesis due to shared genomic sequence. We found that expression levels of Tti2-a part of a specialised protein chaperone complex regulating stability of PIKK kinases-were concomitantly influencing adult neurogenesis and serum glucose levels. In human populations hundreds of genomic variants regulate TTI2 expression, potentially affecting brain function and glucose homeostasis.

  • Název v anglickém jazyce

    Systems genetics in the rat HXB/BXH family identifies Tti2 as a pleiotropic quantitative trait gene for adult hippocampal neurogenesis and serum glucose

  • Popis výsledku anglicky

    Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2(+/-) mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia. Author summaryMetabolic and neurological disorders are often comorbid, suggesting that biological pathways which orchestrate peripheral homeostasis and the integrity of the nervous system intersect. The genetic architecture behind these relationships is still poorly described, in part because molecular processes in the human brain are very difficult to study. We thus used a rodent genetic reference population to investigate links between adult hippocampal neurogenesis-a cellular plasticity mechanism important for learning flexibility-and metabolism. We measured adult neurogenesis in the family of 30 HXB/BXH rat recombinant inbred strains, who are characterised by stable differences in metabolism, behaviour, and gene expression levels.Because DNA variants affecting distinct traits segregated into different members of the family, it was possible to determine which of the previously published phenotypes correlated to adult neurogenesis due to shared genomic sequence. We found that expression levels of Tti2-a part of a specialised protein chaperone complex regulating stability of PIKK kinases-were concomitantly influencing adult neurogenesis and serum glucose levels. In human populations hundreds of genomic variants regulate TTI2 expression, potentially affecting brain function and glucose homeostasis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10603 - Genetics and heredity (medical genetics to be 3)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS genetics

  • ISSN

    1553-7390

  • e-ISSN

  • Svazek periodika

    18

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    35

  • Strana od-do

    "Art. no. e1009638"

  • Kód UT WoS článku

    000780213300003

  • EID výsledku v databázi Scopus

    2-s2.0-85128526029