Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023001%3A_____%2F24%3A00085007" target="_blank" >RIV/00023001:_____/24:00085007 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0966327424001229?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0966327424001229?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trim.2024.102106" target="_blank" >10.1016/j.trim.2024.102106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons
Popis výsledku v původním jazyce
We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.
Název v anglickém jazyce
Adipose tissue-derived mesenchymal stem cells promote the vascularization of pancreatic islets transplanted into decellularized pancreatic skeletons
Popis výsledku anglicky
We have recently developed a model of pancreatic islet transplantation into a decellularized pancreatic tail in rats. As the pancreatic skeletons completely lack endothelial cells, we investigated the effect of co-transplantation of mesenchymal stem cells and endothelial cells to promote revascularization. Decellularized matrix of the pancreatic tail was prepared by perfusion with Triton X-100, sodium dodecyl sulfate and DNase solution. Isolated pancreatic islets were infused into the skeletons via the splenic vein either alone, together with adipose tissue-derived mesenchymal stem cells (adMSCs), or with a combination of adMSCs and rat endothelial cells (rat ECs). Repopulated skeletons were transplanted into the subcutaneous tissue and explanted 9 days later for histological examination. Possible immunomodulatory effects of rat adMSCs on the survival of highly immunogenic green protein-expressing human ECs were also tested after their transplantation beneath the renal capsule. The immunomodulatory effects of adMSCs were also tested in vitro using the Invitrogen Click-iT EdU system. In the presence of adMSCs, the proliferation of splenocytes as a response to phytohaemagglutinin A was reduced by 47% (the stimulation index decreased from 1.7 to 0.9, P = 0.008) and the reaction to human ECs was reduced by 58% (the stimulation index decreased from 1.6 to 0.7, P = 0.03). Histological examination of the explanted skeletons seeded only with the islets showed their partial disintegration and only a rare presence of CD31-positive cells. However, skeletons seeded with a combination of islets and adMSCs showed preserved islet morphology and rich vascularity. In contrast, the addition of syngeneic rat ECs resulted in islet-cell necrosis with only few endothelial cells present. Live green fluorescence-positive endothelial cells transplanted either alone or with adMSCs were not detected beneath the renal capsule. Though the adMSCs significantly reduced in vitro proliferation stimulated by either phytohaemagglutinin A or by xenogeneic human ECs, in vivo co-transplanted adMSCs did not suppress the post-transplant immune response to xenogeneic ECs. Even in the syngeneic model, ECs co-transplantation did not lead to sufficient vascularization in the transplant area. In contrast, islet co-transplantation together with adMSCs successfully promoted the revascularization of extracellular matrix in the subcutaneous tissue.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30213 - Transplantation
Návaznosti výsledku
Projekt
<a href="/cs/project/LX22NPO5104" target="_blank" >LX22NPO5104: Národní institut pro výzkum metabolických a kardiovaskulárních onemocnění</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Transplant immunology
ISSN
0966-3274
e-ISSN
1878-5492
Svazek periodika
86
Číslo periodika v rámci svazku
October 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
"art. no. 102106"
Kód UT WoS článku
001295810200001
EID výsledku v databázi Scopus
2-s2.0-85201099089