The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023272%3A_____%2F24%3A10136653" target="_blank" >RIV/00023272:_____/24:10136653 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10490467
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/geb.13911" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/geb.13911</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/geb.13911" target="_blank" >10.1111/geb.13911</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models
Popis výsledku v původním jazyce
Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs. Innovation: Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.
Název v anglickém jazyce
The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models
Popis výsledku anglicky
Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs. Innovation: Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10613 - Zoology
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Global Ecology and Biogeography
ISSN
1466-822X
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
001309136200001
EID výsledku v databázi Scopus
—