Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023272%3A_____%2F24%3A10136653" target="_blank" >RIV/00023272:_____/24:10136653 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/24:10490467

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1111/geb.13911" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/geb.13911</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/geb.13911" target="_blank" >10.1111/geb.13911</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models

  • Popis výsledku v původním jazyce

    Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species&apos; realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species&apos; range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species&apos; ranges and thereby range limits that are complementary to information offered by SDMs. Innovation: Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.

  • Název v anglickém jazyce

    The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models

  • Popis výsledku anglicky

    Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species&apos; realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species&apos; range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse-scale information on the extent of species&apos; ranges and thereby range limits that are complementary to information offered by SDMs. Innovation: Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta-learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert-defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data-driven way to account for uncertainty in expert-defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10613 - Zoology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Global Ecology and Biogeography

  • ISSN

    1466-822X

  • e-ISSN

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    001309136200001

  • EID výsledku v databázi Scopus