A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023728%3A_____%2F24%3AN0000008" target="_blank" >RIV/00023728:_____/24:N0000008 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00023728:_____/24:N0000001 RIV/00216208:11110/24:10483668 RIV/61384399:31140/24:00060340
Výsledek na webu
<a href="https://doi.org/10.1093/rheumatology/keae383" target="_blank" >https://doi.org/10.1093/rheumatology/keae383</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/rheumatology/keae383" target="_blank" >10.1093/rheumatology/keae383</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA
Popis výsledku v původním jazyce
The presence of ACPA significantly increases the risk of developing RA. Dysregulation of lymphocyte subpopulations was previously described in RA. Our objective was to propose the predictive model for progression to clinical arthritis based on peripheral lymphocyte subsets and ACPA in individuals who are at risk of RA. Our study included 207 at-risk individuals defined by the presence of arthralgias and either additional ACPA positivity or meeting the EULAR definition for clinically suspect arthralgia. For the construction of predictive models, 153 individuals with symptom duration ≥12 months who have not yet progressed to arthritis were included. The lymphocyte subsets were evaluated using flow cytometry and anti-CCP using ELISA. Out of all individuals with arthralgia, 41 progressed to arthritis. A logistic regression model with baseline peripheral blood lymphocyte subpopulations and ACPA as predictors was constructed. The resulting predictive model showed that high anti-CCP IgG, higher percentage of CD4+ T cells, and lower percentage of T and NK cells increased the probability of arthritis development. Moreover, the proposed classification decision tree showed that individuals having both high anti-CCP IgG and low NK cells have the highest risk of developing arthritis. We propose a predictive model based on baseline levels of lymphocyte subpopulations and ACPA to identify individuals with arthralgia with the highest risk of progression to clinical arthritis. The final model includes T cells and NK cells, which are involved in the pathogenesis of RA. This preliminary model requires further validation in larger at-risk cohorts.
Název v anglickém jazyce
A predictive model for progression to clinical arthritis in at-risk individuals with arthralgia based on lymphocyte subsets and ACPA
Popis výsledku anglicky
The presence of ACPA significantly increases the risk of developing RA. Dysregulation of lymphocyte subpopulations was previously described in RA. Our objective was to propose the predictive model for progression to clinical arthritis based on peripheral lymphocyte subsets and ACPA in individuals who are at risk of RA. Our study included 207 at-risk individuals defined by the presence of arthralgias and either additional ACPA positivity or meeting the EULAR definition for clinically suspect arthralgia. For the construction of predictive models, 153 individuals with symptom duration ≥12 months who have not yet progressed to arthritis were included. The lymphocyte subsets were evaluated using flow cytometry and anti-CCP using ELISA. Out of all individuals with arthralgia, 41 progressed to arthritis. A logistic regression model with baseline peripheral blood lymphocyte subpopulations and ACPA as predictors was constructed. The resulting predictive model showed that high anti-CCP IgG, higher percentage of CD4+ T cells, and lower percentage of T and NK cells increased the probability of arthritis development. Moreover, the proposed classification decision tree showed that individuals having both high anti-CCP IgG and low NK cells have the highest risk of developing arthritis. We propose a predictive model based on baseline levels of lymphocyte subpopulations and ACPA to identify individuals with arthralgia with the highest risk of progression to clinical arthritis. The final model includes T cells and NK cells, which are involved in the pathogenesis of RA. This preliminary model requires further validation in larger at-risk cohorts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30226 - Rheumatology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Rheumatology (Oxford).
ISSN
1462-0324
e-ISSN
1462-0332
Svazek periodika
63
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
3155-3163
Kód UT WoS článku
001289018000001
EID výsledku v databázi Scopus
2-s2.0-85204479223