Sleep spindles detection using empirical mode decomposition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F15%3A43914841" target="_blank" >RIV/00023752:_____/15:43914841 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/15:00237334 RIV/68407700:21730/15:00237334
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7347063" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7347063</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IWCIM.2015.7347063" target="_blank" >10.1109/IWCIM.2015.7347063</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sleep spindles detection using empirical mode decomposition
Popis výsledku v původním jazyce
Sleep spindles are very important EEG patterns in modern neuroscience. There were developed many spindle detection algorithms, but not all of them are suitable for patients with insomnia because of artifacts, movements and complicated spindle producing. The paper presents a spindle detection method based on proper preprocessing and classification of stationary segments using Naive Bayes classifier. Preprocessing was performed using Empirical Mode Decomposition, which decomposes the signal into trends. Trends rejecting from the signal gives filtered signal for feature processing. To evaluate the quality of proposed approach, F-measure, positive predicative value and true positive rating were calculated. The method shows good results on dataset of 11 insomniac patient: F-measure by sample was 40.72% and F-measure by events was 48.59%. The results were also compared with Martin, Molle, Wendt and Ferallelli methods.
Název v anglickém jazyce
Sleep spindles detection using empirical mode decomposition
Popis výsledku anglicky
Sleep spindles are very important EEG patterns in modern neuroscience. There were developed many spindle detection algorithms, but not all of them are suitable for patients with insomnia because of artifacts, movements and complicated spindle producing. The paper presents a spindle detection method based on proper preprocessing and classification of stationary segments using Naive Bayes classifier. Preprocessing was performed using Empirical Mode Decomposition, which decomposes the signal into trends. Trends rejecting from the signal gives filtered signal for feature processing. To evaluate the quality of proposed approach, F-measure, positive predicative value and true positive rating were calculated. The method shows good results on dataset of 11 insomniac patient: F-measure by sample was 40.72% and F-measure by events was 48.59%. The results were also compared with Martin, Molle, Wendt and Ferallelli methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Workshop on Computational Intelligence for Multimedia Understanding
ISBN
978-1-4673-8457-5
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Prague, Czech Republic
Datum konání akce
29. 10. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—