Application of artificial neural networks for analyses of EEG record with semi-automated etalons extraction: A pilot study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F16%3A43915395" target="_blank" >RIV/00023752:_____/16:43915395 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/16:00304845 RIV/68407700:21460/16:00304845 RIV/68407700:21730/16:00304845 RIV/61989100:27240/16:86097740
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-319-44188-7_7" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-44188-7_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-44188-7_7" target="_blank" >10.1007/978-3-319-44188-7_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of artificial neural networks for analyses of EEG record with semi-automated etalons extraction: A pilot study
Popis výsledku v původním jazyce
Application of artificial neural network (ANN) classification - multilayer perceptron (MLP) with simulated annealing for initialization and genetic algorithm for weight optimization on multi-channel EEG record is presented here. The novelty of the approach lies in the semi-automated etalon extraction. The etalons are suggested by the k-means algorithm and verified/edited by an expert. The whole process of EEG record consists of multichannel adaptive segmentation, feature extraction from segments, semi-automatic process of etalons extraction by the k-means cluster analysis leading to color segment identification and continuing with manual choice of segments for etalons by the expert and feature extraction of chosen etalons. Subsequent classification by ANN leads to unique color identification of segments in the EEG record and additionally in temporal profile. Our goal is to help the physician by mimetic software because the examination of long multichannel EEG is a tedious work.
Název v anglickém jazyce
Application of artificial neural networks for analyses of EEG record with semi-automated etalons extraction: A pilot study
Popis výsledku anglicky
Application of artificial neural network (ANN) classification - multilayer perceptron (MLP) with simulated annealing for initialization and genetic algorithm for weight optimization on multi-channel EEG record is presented here. The novelty of the approach lies in the semi-automated etalon extraction. The etalons are suggested by the k-means algorithm and verified/edited by an expert. The whole process of EEG record consists of multichannel adaptive segmentation, feature extraction from segments, semi-automatic process of etalons extraction by the k-means cluster analysis leading to color segment identification and continuing with manual choice of segments for etalons by the expert and feature extraction of chosen etalons. Subsequent classification by ANN leads to unique color identification of segments in the EEG record and additionally in temporal profile. Our goal is to help the physician by mimetic software because the examination of long multichannel EEG is a tedious work.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
17th International Conference on Engineering Applications of Neural Networks, EANN 2016; Aberdeen; United Kingdom; 2 September 2016 through 5 September 2016
ISBN
978-3-319-44187-0
ISSN
1865-0929
e-ISSN
—
Počet stran výsledku
14
Strana od-do
94-107
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Aberdeen; United Kingdo
Datum konání akce
2. 9. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—