Detection of Sleep Stages in Temporal Profiles in Neonatal EEG—k-NN versus k-Means Approach: A Feasibility Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00321988" target="_blank" >RIV/68407700:21460/19:00321988 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/19:00321988
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_96" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9038-7_96</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9038-7_96" target="_blank" >10.1007/978-981-10-9038-7_96</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Sleep Stages in Temporal Profiles in Neonatal EEG—k-NN versus k-Means Approach: A Feasibility Study
Popis výsledku v původním jazyce
The aim of this feasibility study is to experimentally verify the detection of changes of sleep stages in neonates with our proposed semi-automated approach using k-NN classification in comparison with a fully automated approach using simple k-means cluster analysis for classification (instead of k-NN). Our semi-automatic approach uses the k-NN classifier trained on etalons (prototypes) created by semi-automated etalons extraction (k-means for etalons suggestion and expert-in-the-loop for verification). Both methods are compared to labelling of sleep stages made by an experienced physician Dr. K. Paul. An EEG recording of full-term neonate is chosen from group of EEG recordings: full-term and preterm neonates recorded from eight electrodes positioned in standard conditions. The EEG recording is digitally preprocessed by mean-removal filter (no other filters are applied) and segmented adaptively. For each segment, 24 features are extracted and send to two classification processes: k-means and k-NN. Classified segments are plotted in temporal profiles (class membership in time) that are analysed for sleep stages using our method of creating a single detection curve from all channels and a threshold is applied on this detection curve to detect sleep stages.
Název v anglickém jazyce
Detection of Sleep Stages in Temporal Profiles in Neonatal EEG—k-NN versus k-Means Approach: A Feasibility Study
Popis výsledku anglicky
The aim of this feasibility study is to experimentally verify the detection of changes of sleep stages in neonates with our proposed semi-automated approach using k-NN classification in comparison with a fully automated approach using simple k-means cluster analysis for classification (instead of k-NN). Our semi-automatic approach uses the k-NN classifier trained on etalons (prototypes) created by semi-automated etalons extraction (k-means for etalons suggestion and expert-in-the-loop for verification). Both methods are compared to labelling of sleep stages made by an experienced physician Dr. K. Paul. An EEG recording of full-term neonate is chosen from group of EEG recordings: full-term and preterm neonates recorded from eight electrodes positioned in standard conditions. The EEG recording is digitally preprocessed by mean-removal filter (no other filters are applied) and segmented adaptively. For each segment, 24 features are extracted and send to two classification processes: k-means and k-NN. Classified segments are plotted in temporal profiles (class membership in time) that are analysed for sleep stages using our method of creating a single detection curve from all channels and a threshold is applied on this detection curve to detect sleep stages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018 (Vol. 2)
ISBN
978-981-10-9037-0
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
5
Strana od-do
523-527
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
—
Místo konání akce
Prague
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449742700096