Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F18%3A43919504" target="_blank" >RIV/00023752:_____/18:43919504 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1111/acps.12964#" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1111/acps.12964#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/acps.12964" target="_blank" >10.1111/acps.12964</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity

  • Popis výsledku v původním jazyce

    Objective: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross‐sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication&apos;s effect. These elements cast doubt on previous findings’ reproducibility. Method: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross‐site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first‐episode patients. Results: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first‐episode psychosis patients (73% accuracy). Conclusion: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.

  • Název v anglickém jazyce

    Identifying a neuroanatomical signature of schizophrenia, reproducible across sites and stages, using machine learning with structured sparsity

  • Popis výsledku anglicky

    Objective: Structural MRI (sMRI) increasingly offers insight into abnormalities inherent to schizophrenia. Previous machine learning applications suggest that individual classification is feasible and reliable and, however, is focused on the predictive performance of the clinical status in cross‐sectional designs, which has limited biological perspectives. Moreover, most studies depend on relatively small cohorts or single recruiting site. Finally, no study controlled for disease stage or medication&apos;s effect. These elements cast doubt on previous findings’ reproducibility. Method: We propose a machine learning algorithm that provides an interpretable brain signature. Using large datasets collected from 4 sites (276 schizophrenia patients, 330 controls), we assessed cross‐site prediction reproducibility and associated predictive signature. For the first time, we evaluated the predictive signature regarding medication and illness duration using an independent dataset of first‐episode patients. Results: Machine learning classifiers based on neuroanatomical features yield significant intersite prediction accuracies (72%) together with an excellent predictive signature stability. This signature provides a neural score significantly correlated with symptom severity and the extent of cognitive impairments. Moreover, this signature demonstrates its efficiency on first‐episode psychosis patients (73% accuracy). Conclusion: These results highlight the existence of a common neuroanatomical signature for schizophrenia, shared by a majority of patients even from an early stage of the disorder.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30215 - Psychiatry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/NV16-32696A" target="_blank" >NV16-32696A: Využití strojového učení v analýze dat z magnetické rezonance za účelem zlepšení časné diagnostiky schizofrenie a bipolární poruchy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Psychiatrica Scandinavica

  • ISSN

    0001-690X

  • e-ISSN

  • Svazek periodika

    138

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    DK - Dánské království

  • Počet stran výsledku

    10

  • Strana od-do

    571-580

  • Kód UT WoS článku

    000449521200009

  • EID výsledku v databázi Scopus

    2-s2.0-85053693745