Identification of microrecording artifacts with wavelet analysis and convolutional neural network: an image recognition Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F19%3A43920000" target="_blank" >RIV/00023752:_____/19:43920000 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00334854 RIV/68407700:21460/19:00334854 RIV/00216208:11110/19:10398954 RIV/00064165:_____/19:10398954
Výsledek na webu
<a href="https://content.sciendo.com/configurable/contentpage/journals$002fmsr$002f19$002f5$002farticle-p222.xml" target="_blank" >https://content.sciendo.com/configurable/contentpage/journals$002fmsr$002f19$002f5$002farticle-p222.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/msr-2019-0029" target="_blank" >10.2478/msr-2019-0029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identification of microrecording artifacts with wavelet analysis and convolutional neural network: an image recognition Approach
Popis výsledku v původním jazyce
Deep brain stimulation (DBS) is an internationally accepted form of treatment option for selected patients with Parkinson’s disease and dystonia. Intraoperative extracellular microelectrode recordings (MER) are considered as the standard electrophysiological method for the precise positioning of the DBS electrode into the target brain structure. Pre-processing of MERs is a key phase in clinical analysis, with intraoperative microelectrode recordings being prone to several artifact groups (up to 25 %). The aim of this methodological article is to provide a convolutional neural network (CNN) processing pipeline for the detection of artifacts in an MER. We applied continuous wavelet transform (CWT) to generate an over-complete time–frequency representation. We demonstrated that when attempting to find artifacts in an MER, the new CNN + CWT provides a high level of accuracy (ACC = 88.1 %), identifies individual classes of artifacts (ACC = 75.3 %) and also offers artifact time onset detail, which can lead to a reduction in false positives/negatives. In summary, the presented methodology is capable of identifying and removing various artifacts in a comprehensive database of MER and represents a substantial improvement over the existing methodology. We believe that this approach will assist in the proposal of interesting clinical hypotheses and will have neurologically relevant effects.
Název v anglickém jazyce
Identification of microrecording artifacts with wavelet analysis and convolutional neural network: an image recognition Approach
Popis výsledku anglicky
Deep brain stimulation (DBS) is an internationally accepted form of treatment option for selected patients with Parkinson’s disease and dystonia. Intraoperative extracellular microelectrode recordings (MER) are considered as the standard electrophysiological method for the precise positioning of the DBS electrode into the target brain structure. Pre-processing of MERs is a key phase in clinical analysis, with intraoperative microelectrode recordings being prone to several artifact groups (up to 25 %). The aim of this methodological article is to provide a convolutional neural network (CNN) processing pipeline for the detection of artifacts in an MER. We applied continuous wavelet transform (CWT) to generate an over-complete time–frequency representation. We demonstrated that when attempting to find artifacts in an MER, the new CNN + CWT provides a high level of accuracy (ACC = 88.1 %), identifies individual classes of artifacts (ACC = 75.3 %) and also offers artifact time onset detail, which can lead to a reduction in false positives/negatives. In summary, the presented methodology is capable of identifying and removing various artifacts in a comprehensive database of MER and represents a substantial improvement over the existing methodology. We believe that this approach will assist in the proposal of interesting clinical hypotheses and will have neurologically relevant effects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/NV19-04-00233" target="_blank" >NV19-04-00233: Klinické, zobrazovací a biologické prediktory účinků hluboké mozkové stimulace u Parkinsonovy nemoci</a><br>
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement Science Review
ISSN
1335-8871
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
10
Strana od-do
222-231
Kód UT WoS článku
000489311900005
EID výsledku v databázi Scopus
2-s2.0-85074544169