Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning and big data analytics in bipolar disorder: a position paper from the International Society for Bipolar Disorders Big Data Task Force

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F19%3A43920091" target="_blank" >RIV/00023752:_____/19:43920091 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1111/bdi.12828" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1111/bdi.12828</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/bdi.12828" target="_blank" >10.1111/bdi.12828</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning and big data analytics in bipolar disorder: a position paper from the International Society for Bipolar Disorders Big Data Task Force

  • Popis výsledku v původním jazyce

    Objectives: The International Society for Bipolar Disorders Big Data Task Force assembled leading researchers in the field of bipolar disorder (BD), machine learning, and big data with extensive experience to evaluate the rationale of machine learning and big data analytics strategies for BD. Method: A task force was convened to examine and integrate findings from the scientific literature related to machine learning and big data based studies to clarify terminology and to describe challenges and potential applications in the field of BD. We also systematically searched PubMed, Embase, and Web of Science for articles published up to January 2019 that used machine learning in BD. Results: The results suggested that big data analytics has the potential to provide risk calculators to aid in treatment decisions and predict clinical prognosis, including suicidality, for individual patients. This approach can advance diagnosis by enabling discovery of more relevant data-driven phenotypes, as well as by predicting transition to the disorder in high-risk unaffected subjects. We also discuss the most frequent challenges that big data analytics applications can face, such as heterogeneity, lack of external validation and replication of some studies, cost and non-stationary distribution of the data, and lack of appropriate funding. Conclusion: Machine learning-based studies, including atheoretical data-driven big data approaches, provide an opportunity to more accurately detect those who are at risk, parse-relevant phenotypes as well as inform treatment selection and prognosis. However, several methodological challenges need to be addressed in order to translate research findings to clinical settings.

  • Název v anglickém jazyce

    Machine learning and big data analytics in bipolar disorder: a position paper from the International Society for Bipolar Disorders Big Data Task Force

  • Popis výsledku anglicky

    Objectives: The International Society for Bipolar Disorders Big Data Task Force assembled leading researchers in the field of bipolar disorder (BD), machine learning, and big data with extensive experience to evaluate the rationale of machine learning and big data analytics strategies for BD. Method: A task force was convened to examine and integrate findings from the scientific literature related to machine learning and big data based studies to clarify terminology and to describe challenges and potential applications in the field of BD. We also systematically searched PubMed, Embase, and Web of Science for articles published up to January 2019 that used machine learning in BD. Results: The results suggested that big data analytics has the potential to provide risk calculators to aid in treatment decisions and predict clinical prognosis, including suicidality, for individual patients. This approach can advance diagnosis by enabling discovery of more relevant data-driven phenotypes, as well as by predicting transition to the disorder in high-risk unaffected subjects. We also discuss the most frequent challenges that big data analytics applications can face, such as heterogeneity, lack of external validation and replication of some studies, cost and non-stationary distribution of the data, and lack of appropriate funding. Conclusion: Machine learning-based studies, including atheoretical data-driven big data approaches, provide an opportunity to more accurately detect those who are at risk, parse-relevant phenotypes as well as inform treatment selection and prognosis. However, several methodological challenges need to be addressed in order to translate research findings to clinical settings.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30215 - Psychiatry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bipolar Disorders

  • ISSN

    1398-5647

  • e-ISSN

  • Svazek periodika

    21

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    DK - Dánské království

  • Počet stran výsledku

    13

  • Strana od-do

    582-594

  • Kód UT WoS článku

    000486760700001

  • EID výsledku v databázi Scopus

    2-s2.0-85073987808