Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Brief Visuospatial Memory Test-Revised: normative data and clinical utility of learning indices in Parkinson's disease

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43920421" target="_blank" >RIV/00023752:_____/20:43920421 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/47122099:_____/20:N0000022 RIV/00216208:11110/20:10418129 RIV/00216208:11120/20:43920782 RIV/00064165:_____/20:10418129

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/full/10.1080/13803395.2020.1845303" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/13803395.2020.1845303</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/13803395.2020.1845303" target="_blank" >10.1080/13803395.2020.1845303</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Brief Visuospatial Memory Test-Revised: normative data and clinical utility of learning indices in Parkinson's disease

  • Popis výsledku v původním jazyce

    Introduction: The Brief Visual Memory Test-Revised (BVMT-R) is a frequently used visuospatial declarative memory test, but normative data in the Czech population are lacking. Moreover, the BVMT-R includes promising learning indexes that can be used to detect learning deficits in Parkinson&apos;s disease (PD). However, its clinical usefulness has not yet been thoroughly examined. Early detection of memory impairment in PD is essential for effective treatment. Therefore, this study aimed to provide BVMT-R Czech normative data for clinical use and to find the detection potential of the principal BVMT-R scores, including new learning indices, to capture the cognitive deficit in PD. Method: The BVMT-R were administered to a normative sample of 920 participants aged 17 to 95 years and to a clinical sample of 60 PD patients; 25 with mild cognitive impairment (PD-MCI) and 35 with normal cognition (PD-NC). In order to provide normative values, multiple regression analyses were employed, and to compare the clinical and control sample, Bayesian Hierarchical Linear Models were used. Results: The best model for regression-based norms showed to be with age + age2 + education + sex as predictors. From all learning indexes, L6 (sum of trials 1-3), followed by, L4 (sum of trials 1-3 multiplied by the difference between the highest and the lowest score) best differentiated between controls or PD-NC and PD-MCI. Conclusions: We provide regression-based normative values for BVMT-R that could be used in clinical settings and meta-analytic efforts. Furthermore, we revealed visuospatial learning and memory deficit in PD-MCI. We have also identified the most discriminative learning index adapted to BVMT-R.

  • Název v anglickém jazyce

    Brief Visuospatial Memory Test-Revised: normative data and clinical utility of learning indices in Parkinson's disease

  • Popis výsledku anglicky

    Introduction: The Brief Visual Memory Test-Revised (BVMT-R) is a frequently used visuospatial declarative memory test, but normative data in the Czech population are lacking. Moreover, the BVMT-R includes promising learning indexes that can be used to detect learning deficits in Parkinson&apos;s disease (PD). However, its clinical usefulness has not yet been thoroughly examined. Early detection of memory impairment in PD is essential for effective treatment. Therefore, this study aimed to provide BVMT-R Czech normative data for clinical use and to find the detection potential of the principal BVMT-R scores, including new learning indices, to capture the cognitive deficit in PD. Method: The BVMT-R were administered to a normative sample of 920 participants aged 17 to 95 years and to a clinical sample of 60 PD patients; 25 with mild cognitive impairment (PD-MCI) and 35 with normal cognition (PD-NC). In order to provide normative values, multiple regression analyses were employed, and to compare the clinical and control sample, Bayesian Hierarchical Linear Models were used. Results: The best model for regression-based norms showed to be with age + age2 + education + sex as predictors. From all learning indexes, L6 (sum of trials 1-3), followed by, L4 (sum of trials 1-3 multiplied by the difference between the highest and the lowest score) best differentiated between controls or PD-NC and PD-MCI. Conclusions: We provide regression-based normative values for BVMT-R that could be used in clinical settings and meta-analytic efforts. Furthermore, we revealed visuospatial learning and memory deficit in PD-MCI. We have also identified the most discriminative learning index adapted to BVMT-R.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50103 - Cognitive sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Clinical and Experimental Neuropsychology

  • ISSN

    1380-3395

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    1099-1110

  • Kód UT WoS článku

    000589848100001

  • EID výsledku v databázi Scopus

    2-s2.0-85096108853