Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43920430" target="_blank" >RIV/00023752:_____/20:43920430 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/20:00345805
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-60946-7_4" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-60946-7_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60946-7_4" target="_blank" >10.1007/978-3-030-60946-7_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement
Popis výsledku v původním jazyce
Identification of subcortical structures is an essential step in surgical planning for interventions such as the deep brain stimulation (DBS), in which permanent electrode is implanted in a precisely defined location. For refinement of the target localisation and compensation of brain shift occurring during the surgery, intra-operative electrophysiological recording using microelectrodes is usually undertaken. In this paper, we present a multimodal method that consists of a) subthalamic nucleus (STN) segmentation from magnetic resonance T2 images using 3D active contour fitting and b) a subsequent brain shift compensation step, increasing the accuracy of microelectrode placement localisation by the probabilistic electrophysiology-based fitting. The method is evaluated on a data set of 39 multi-electrode trajectories from 20 patients undergoing DBS surgery for Parkinson’s disease in a leave-one-subject-out scenario. The performance comparison shows increased sensitivity and slightly decreased specificity of STN identification using the individually-segmented 3D contours, compared to electrophysiology-based refinement of a standard 3D atlas. To achieve accurate segmentation from the low-resolution clinical T2 images, a more sophisticated approach, including shape priors and intensity model, needs to be implemented. However, the presented approach is a step towards automatic identification of microelectrode recording sites and possibly also an assistive system for the DBS surgery. © 2020, Springer Nature Switzerland AG.
Název v anglickém jazyce
Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement
Popis výsledku anglicky
Identification of subcortical structures is an essential step in surgical planning for interventions such as the deep brain stimulation (DBS), in which permanent electrode is implanted in a precisely defined location. For refinement of the target localisation and compensation of brain shift occurring during the surgery, intra-operative electrophysiological recording using microelectrodes is usually undertaken. In this paper, we present a multimodal method that consists of a) subthalamic nucleus (STN) segmentation from magnetic resonance T2 images using 3D active contour fitting and b) a subsequent brain shift compensation step, increasing the accuracy of microelectrode placement localisation by the probabilistic electrophysiology-based fitting. The method is evaluated on a data set of 39 multi-electrode trajectories from 20 patients undergoing DBS surgery for Parkinson’s disease in a leave-one-subject-out scenario. The performance comparison shows increased sensitivity and slightly decreased specificity of STN identification using the individually-segmented 3D contours, compared to electrophysiology-based refinement of a standard 3D atlas. To achieve accurate segmentation from the low-resolution clinical T2 images, a more sophisticated approach, including shape priors and intensity model, needs to be implemented. However, the presented approach is a step towards automatic identification of microelectrode recording sites and possibly also an assistive system for the DBS surgery. © 2020, Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
10th International Workshop on Multimodal Learning for Clinical Decision Support and 9th International Workshop on Clinical Image-Based Procedures
ISBN
978-3-030-60945-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
34-43
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Lima; Peru
Datum konání akce
4. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—