Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F20%3A43920430" target="_blank" >RIV/00023752:_____/20:43920430 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/20:00345805

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-60946-7_4" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-60946-7_4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-60946-7_4" target="_blank" >10.1007/978-3-030-60946-7_4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement

  • Popis výsledku v původním jazyce

    Identification of subcortical structures is an essential step in surgical planning for interventions such as the deep brain stimulation (DBS), in which permanent electrode is implanted in a precisely defined location. For refinement of the target localisation and compensation of brain shift occurring during the surgery, intra-operative electrophysiological recording using microelectrodes is usually undertaken. In this paper, we present a multimodal method that consists of a) subthalamic nucleus (STN) segmentation from magnetic resonance T2 images using 3D active contour fitting and b) a subsequent brain shift compensation step, increasing the accuracy of microelectrode placement localisation by the probabilistic electrophysiology-based fitting. The method is evaluated on a data set of 39 multi-electrode trajectories from 20 patients undergoing DBS surgery for Parkinson’s disease in a leave-one-subject-out scenario. The performance comparison shows increased sensitivity and slightly decreased specificity of STN identification using the individually-segmented 3D contours, compared to electrophysiology-based refinement of a standard 3D atlas. To achieve accurate segmentation from the low-resolution clinical T2 images, a more sophisticated approach, including shape priors and intensity model, needs to be implemented. However, the presented approach is a step towards automatic identification of microelectrode recording sites and possibly also an assistive system for the DBS surgery. © 2020, Springer Nature Switzerland AG.

  • Název v anglickém jazyce

    Image-Based Subthalamic Nucleus Segmentation for Deep Brain Surgery with Electrophysiology Aided Refinement

  • Popis výsledku anglicky

    Identification of subcortical structures is an essential step in surgical planning for interventions such as the deep brain stimulation (DBS), in which permanent electrode is implanted in a precisely defined location. For refinement of the target localisation and compensation of brain shift occurring during the surgery, intra-operative electrophysiological recording using microelectrodes is usually undertaken. In this paper, we present a multimodal method that consists of a) subthalamic nucleus (STN) segmentation from magnetic resonance T2 images using 3D active contour fitting and b) a subsequent brain shift compensation step, increasing the accuracy of microelectrode placement localisation by the probabilistic electrophysiology-based fitting. The method is evaluated on a data set of 39 multi-electrode trajectories from 20 patients undergoing DBS surgery for Parkinson’s disease in a leave-one-subject-out scenario. The performance comparison shows increased sensitivity and slightly decreased specificity of STN identification using the individually-segmented 3D contours, compared to electrophysiology-based refinement of a standard 3D atlas. To achieve accurate segmentation from the low-resolution clinical T2 images, a more sophisticated approach, including shape priors and intensity model, needs to be implemented. However, the presented approach is a step towards automatic identification of microelectrode recording sites and possibly also an assistive system for the DBS surgery. © 2020, Springer Nature Switzerland AG.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20602 - Medical laboratory technology (including laboratory samples analysis; diagnostic technologies) (Biomaterials to be 2.9 [physical characteristics of living material as related to medical implants, devices, sensors])

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    10th International Workshop on Multimodal Learning for Clinical Decision Support and 9th International Workshop on Clinical Image-Based Procedures

  • ISBN

    978-3-030-60945-0

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    34-43

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Lima; Peru

  • Datum konání akce

    4. 10. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku