Automated Atlas Fitting for Deep Brain Stimulation Surgery Based on Microelectrode Neuronal Recordings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00064165%3A_____%2F19%3A10384075" target="_blank" >RIV/00064165:_____/19:10384075 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/19:00322045 RIV/00216208:11110/19:10384075 RIV/00023752:_____/19:43919638
Výsledek na webu
<a href="https://doi.org/10.1007/978-981-10-9023-3_19" target="_blank" >https://doi.org/10.1007/978-981-10-9023-3_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-10-9023-3_19" target="_blank" >10.1007/978-981-10-9023-3_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Atlas Fitting for Deep Brain Stimulation Surgery Based on Microelectrode Neuronal Recordings
Popis výsledku v původním jazyce
Introduction: The deep brain stimulation (DBS) is a treatment technique for late-stage Parkinson's disease (PD), based on chronic electrical stimulation of neural tissue through implanted electrodes. To achieve high level of symptom suppression with low side effects, precise electrode placement is necessary, although difficult due to small size of the target nucleus and various sources of inaccuracy, especially brain shift and electrode bending. To increase accuracy of electrode placement, electrophysiological recording using several parallel microelectrodes (MER) is used intraoperatively in most centers. Location of the target nucleus is identified from manual expert evaluation of characteristic neuronal activity. Existing studies have presented several models to classify individual recordings or trajectories automatically. In this study, we extend this approach by fitting a 3D anatomical atlas to the recorded electrophysiological activity, thus adding topological information. Methods: We developed a probabilistic model of neuronal activity in the vicinity the subthalamic nucleus (STN), based on normalized signal energy. The model is used to find a maximum-likelihood transformation of an anatomical surface-based atlas to the recorded activity. The resulting atlas fit is compared to atlas position estimated from pre-operative MRI scans. Accuracy of STN classification is then evaluated in a leave-one-subject-out scenario using expert MER annotation. Results: In an evaluation on a set of 27 multi-electrode trajectories from 15 PD patients, the proposed method showed higher accuracy in STN-nonSTN classification (88.1%) compared to the reference methods (78.7%) with an even more pronounced advantage in sensitivity (69.0% vs 44.6%). Conclusion: The proposed method allows electrophysiology-based refinement of atlas position of the STN and represents a promising direction in refining accuracy of MER localization in clinical DBS setting, as well as in research of DBS mechanisms.
Název v anglickém jazyce
Automated Atlas Fitting for Deep Brain Stimulation Surgery Based on Microelectrode Neuronal Recordings
Popis výsledku anglicky
Introduction: The deep brain stimulation (DBS) is a treatment technique for late-stage Parkinson's disease (PD), based on chronic electrical stimulation of neural tissue through implanted electrodes. To achieve high level of symptom suppression with low side effects, precise electrode placement is necessary, although difficult due to small size of the target nucleus and various sources of inaccuracy, especially brain shift and electrode bending. To increase accuracy of electrode placement, electrophysiological recording using several parallel microelectrodes (MER) is used intraoperatively in most centers. Location of the target nucleus is identified from manual expert evaluation of characteristic neuronal activity. Existing studies have presented several models to classify individual recordings or trajectories automatically. In this study, we extend this approach by fitting a 3D anatomical atlas to the recorded electrophysiological activity, thus adding topological information. Methods: We developed a probabilistic model of neuronal activity in the vicinity the subthalamic nucleus (STN), based on normalized signal energy. The model is used to find a maximum-likelihood transformation of an anatomical surface-based atlas to the recorded activity. The resulting atlas fit is compared to atlas position estimated from pre-operative MRI scans. Accuracy of STN classification is then evaluated in a leave-one-subject-out scenario using expert MER annotation. Results: In an evaluation on a set of 27 multi-electrode trajectories from 15 PD patients, the proposed method showed higher accuracy in STN-nonSTN classification (88.1%) compared to the reference methods (78.7%) with an even more pronounced advantage in sensitivity (69.0% vs 44.6%). Conclusion: The proposed method allows electrophysiology-based refinement of atlas position of the STN and represents a promising direction in refining accuracy of MER localization in clinical DBS setting, as well as in research of DBS mechanisms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
30103 - Neurosciences (including psychophysiology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
World Congress on Medical Physics and Biomedical Engineering 2018
ISBN
978-981-10-9022-6
ISSN
1680-0737
e-ISSN
—
Počet stran výsledku
7
Strana od-do
105-111
Název nakladatele
Springer
Místo vydání
Singapore
Místo konání akce
Prague
Datum konání akce
3. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000449744300019