Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Statistical segmentation model for accurate electrode positioning in Parkinson’s deep brain stimulation based on clinical low-resolution image data and electrophysiology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F24%3A43921277" target="_blank" >RIV/00023752:_____/24:43921277 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378050:_____/24:00585289 RIV/68407700:21230/24:00379522 RIV/00023884:_____/24:00010019

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298320" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298320</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0298320" target="_blank" >10.1371/journal.pone.0298320</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Statistical segmentation model for accurate electrode positioning in Parkinson’s deep brain stimulation based on clinical low-resolution image data and electrophysiology

  • Popis výsledku v původním jazyce

    Background Deep Brain Stimulation (DBS), applying chronic electrical stimulation of subcortical structures, is a clinical intervention applied in major neurologic disorders. In order to achieve a good clinical effect, accurate electrode placement is necessary. The primary localisation is typically based on presurgical MRI imaging, often followed by intra-operative electrophysiology recording to increase the accuracy and to compensate for brain shift, especially in cases where the surgical target is small, and there is low contrast: e.g., in Parkinson&apos;s disease (PD) and in its common target, the subthalamic nucleus (STN).Methods We propose a novel, fully automatic method for intra-operative surgical navigation. First, the surgical target is segmented in presurgical MRI images using a statistical shape-intensity model. Next, automated alignment with intra-operatively recorded microelectrode recordings is performed using a probabilistic model of STN electrophysiology. We apply the method to a dataset of 120 PD patients with clinical T2 1.5T images, of which 48 also had available microelectrode recordings (MER).Results The proposed segmentation method achieved STN segmentation accuracy around dice = 0.60 compared to manual segmentation. This is comparable to the state-of-the-art on low-resolution clinical MRI data. When combined with electrophysiology-based alignment, we achieved an accuracy of 0.85 for correctly including recording sites of STN-labelled MERs in the final STN volume.Conclusion The proposed method combines image-based segmentation of the subthalamic nucleus with microelectrode recordings to estimate their mutual location during the surgery in a fully automated process. Apart from its potential use in clinical targeting, the method can be used to map electrophysiological properties to specific parts of the basal ganglia structures and their vicinity.

  • Název v anglickém jazyce

    Statistical segmentation model for accurate electrode positioning in Parkinson’s deep brain stimulation based on clinical low-resolution image data and electrophysiology

  • Popis výsledku anglicky

    Background Deep Brain Stimulation (DBS), applying chronic electrical stimulation of subcortical structures, is a clinical intervention applied in major neurologic disorders. In order to achieve a good clinical effect, accurate electrode placement is necessary. The primary localisation is typically based on presurgical MRI imaging, often followed by intra-operative electrophysiology recording to increase the accuracy and to compensate for brain shift, especially in cases where the surgical target is small, and there is low contrast: e.g., in Parkinson&apos;s disease (PD) and in its common target, the subthalamic nucleus (STN).Methods We propose a novel, fully automatic method for intra-operative surgical navigation. First, the surgical target is segmented in presurgical MRI images using a statistical shape-intensity model. Next, automated alignment with intra-operatively recorded microelectrode recordings is performed using a probabilistic model of STN electrophysiology. We apply the method to a dataset of 120 PD patients with clinical T2 1.5T images, of which 48 also had available microelectrode recordings (MER).Results The proposed segmentation method achieved STN segmentation accuracy around dice = 0.60 compared to manual segmentation. This is comparable to the state-of-the-art on low-resolution clinical MRI data. When combined with electrophysiology-based alignment, we achieved an accuracy of 0.85 for correctly including recording sites of STN-labelled MERs in the final STN volume.Conclusion The proposed method combines image-based segmentation of the subthalamic nucleus with microelectrode recordings to estimate their mutual location during the surgery in a fully automated process. Apart from its potential use in clinical targeting, the method can be used to map electrophysiological properties to specific parts of the basal ganglia structures and their vicinity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10700 - Other natural sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    "Article number e0298320"

  • Kód UT WoS článku

    001192363700089

  • EID výsledku v databázi Scopus

    2-s2.0-85187839829