Statistical segmentation model for accurate electrode positioning in Parkinson’s deep brain stimulation based on clinical low-resolution image data and electrophysiology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F24%3A43921277" target="_blank" >RIV/00023752:_____/24:43921277 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378050:_____/24:00585289 RIV/68407700:21230/24:00379522 RIV/00023884:_____/24:00010019
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298320" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0298320</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0298320" target="_blank" >10.1371/journal.pone.0298320</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical segmentation model for accurate electrode positioning in Parkinson’s deep brain stimulation based on clinical low-resolution image data and electrophysiology
Popis výsledku v původním jazyce
Background Deep Brain Stimulation (DBS), applying chronic electrical stimulation of subcortical structures, is a clinical intervention applied in major neurologic disorders. In order to achieve a good clinical effect, accurate electrode placement is necessary. The primary localisation is typically based on presurgical MRI imaging, often followed by intra-operative electrophysiology recording to increase the accuracy and to compensate for brain shift, especially in cases where the surgical target is small, and there is low contrast: e.g., in Parkinson's disease (PD) and in its common target, the subthalamic nucleus (STN).Methods We propose a novel, fully automatic method for intra-operative surgical navigation. First, the surgical target is segmented in presurgical MRI images using a statistical shape-intensity model. Next, automated alignment with intra-operatively recorded microelectrode recordings is performed using a probabilistic model of STN electrophysiology. We apply the method to a dataset of 120 PD patients with clinical T2 1.5T images, of which 48 also had available microelectrode recordings (MER).Results The proposed segmentation method achieved STN segmentation accuracy around dice = 0.60 compared to manual segmentation. This is comparable to the state-of-the-art on low-resolution clinical MRI data. When combined with electrophysiology-based alignment, we achieved an accuracy of 0.85 for correctly including recording sites of STN-labelled MERs in the final STN volume.Conclusion The proposed method combines image-based segmentation of the subthalamic nucleus with microelectrode recordings to estimate their mutual location during the surgery in a fully automated process. Apart from its potential use in clinical targeting, the method can be used to map electrophysiological properties to specific parts of the basal ganglia structures and their vicinity.
Název v anglickém jazyce
Statistical segmentation model for accurate electrode positioning in Parkinson’s deep brain stimulation based on clinical low-resolution image data and electrophysiology
Popis výsledku anglicky
Background Deep Brain Stimulation (DBS), applying chronic electrical stimulation of subcortical structures, is a clinical intervention applied in major neurologic disorders. In order to achieve a good clinical effect, accurate electrode placement is necessary. The primary localisation is typically based on presurgical MRI imaging, often followed by intra-operative electrophysiology recording to increase the accuracy and to compensate for brain shift, especially in cases where the surgical target is small, and there is low contrast: e.g., in Parkinson's disease (PD) and in its common target, the subthalamic nucleus (STN).Methods We propose a novel, fully automatic method for intra-operative surgical navigation. First, the surgical target is segmented in presurgical MRI images using a statistical shape-intensity model. Next, automated alignment with intra-operatively recorded microelectrode recordings is performed using a probabilistic model of STN electrophysiology. We apply the method to a dataset of 120 PD patients with clinical T2 1.5T images, of which 48 also had available microelectrode recordings (MER).Results The proposed segmentation method achieved STN segmentation accuracy around dice = 0.60 compared to manual segmentation. This is comparable to the state-of-the-art on low-resolution clinical MRI data. When combined with electrophysiology-based alignment, we achieved an accuracy of 0.85 for correctly including recording sites of STN-labelled MERs in the final STN volume.Conclusion The proposed method combines image-based segmentation of the subthalamic nucleus with microelectrode recordings to estimate their mutual location during the surgery in a fully automated process. Apart from its potential use in clinical targeting, the method can be used to map electrophysiological properties to specific parts of the basal ganglia structures and their vicinity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS One
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
19
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
"Article number e0298320"
Kód UT WoS článku
001192363700089
EID výsledku v databázi Scopus
2-s2.0-85187839829