Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F22%3A43920301" target="_blank" >RIV/00023752:_____/22:43920301 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/22:00342494
Výsledek na webu
<a href="https://www.cambridge.org/core/journals/cns-spectrums/article/motor-activity-patterns-can-distinguish-between-interepisode-bipolar-disorder-patients-and-healthy-controls/DACA92C20D2D9E4CC7530D174798A6AE" target="_blank" >https://www.cambridge.org/core/journals/cns-spectrums/article/motor-activity-patterns-can-distinguish-between-interepisode-bipolar-disorder-patients-and-healthy-controls/DACA92C20D2D9E4CC7530D174798A6AE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1092852920001777" target="_blank" >10.1017/S1092852920001777</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls
Popis výsledku v původním jazyce
OBJECTIVE: Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls into their respective groups.METHODS: Ninety-day actigraphy records from 25 inter-episode BD patients (i.e. Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) <15) and 25 sex- and age-matched healthy controls (HC), were used in order to identify latent actigraphic biomarkers capable of discriminating between BD patients and HC. Mean values and time-variations of a set of standard actigraphy features were analysed and further validated using the random forest classifier. RESULTS: Using all actigraphy features, this method correctly assigned 88% (sensitivity=85%, specificity=91%) of BD patients and HC to their respective group. The classification success may be confounded by differences in employment between BD patients and HC. When motor activity features resistant to the employment status were used (the strongest feature being time variation of intradaily variability, Cohen’s d=1.33), 79% of the subjects (sensitivity=76%, specificity=81%) were correctly classified.CONCLUSION: A machine learning actigraphy-based model was capable of distinguishing between inter-episode BD patients and HC solely on the basis of motor activity. The classification remained valid even when features influenced by employment status were omitted. The findings suggest that temporal variability of actigraphic parameters may provide discriminative power for differentiating between BD patients and HC while being less affected by employment status.
Název v anglickém jazyce
Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls
Popis výsledku anglicky
OBJECTIVE: Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls into their respective groups.METHODS: Ninety-day actigraphy records from 25 inter-episode BD patients (i.e. Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) <15) and 25 sex- and age-matched healthy controls (HC), were used in order to identify latent actigraphic biomarkers capable of discriminating between BD patients and HC. Mean values and time-variations of a set of standard actigraphy features were analysed and further validated using the random forest classifier. RESULTS: Using all actigraphy features, this method correctly assigned 88% (sensitivity=85%, specificity=91%) of BD patients and HC to their respective group. The classification success may be confounded by differences in employment between BD patients and HC. When motor activity features resistant to the employment status were used (the strongest feature being time variation of intradaily variability, Cohen’s d=1.33), 79% of the subjects (sensitivity=76%, specificity=81%) were correctly classified.CONCLUSION: A machine learning actigraphy-based model was capable of distinguishing between inter-episode BD patients and HC solely on the basis of motor activity. The classification remained valid even when features influenced by employment status were omitted. The findings suggest that temporal variability of actigraphic parameters may provide discriminative power for differentiating between BD patients and HC while being less affected by employment status.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CNS Spectrums
ISSN
1092-8529
e-ISSN
2165-6509
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
82-92
Kód UT WoS článku
000754571100012
EID výsledku v databázi Scopus
2-s2.0-85092059678