Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F22%3A43920301" target="_blank" >RIV/00023752:_____/22:43920301 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21230/22:00342494

  • Výsledek na webu

    <a href="https://www.cambridge.org/core/journals/cns-spectrums/article/motor-activity-patterns-can-distinguish-between-interepisode-bipolar-disorder-patients-and-healthy-controls/DACA92C20D2D9E4CC7530D174798A6AE" target="_blank" >https://www.cambridge.org/core/journals/cns-spectrums/article/motor-activity-patterns-can-distinguish-between-interepisode-bipolar-disorder-patients-and-healthy-controls/DACA92C20D2D9E4CC7530D174798A6AE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1092852920001777" target="_blank" >10.1017/S1092852920001777</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls

  • Popis výsledku v původním jazyce

    OBJECTIVE: Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls into their respective groups.METHODS: Ninety-day actigraphy records from 25 inter-episode BD patients (i.e. Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) &lt;15) and 25 sex- and age-matched healthy controls (HC), were used in order to identify latent actigraphic biomarkers capable of discriminating between BD patients and HC. Mean values and time-variations of a set of standard actigraphy features were analysed and further validated using the random forest classifier. RESULTS: Using all actigraphy features, this method correctly assigned 88% (sensitivity=85%, specificity=91%) of BD patients and HC to their respective group. The classification success may be confounded by differences in employment between BD patients and HC. When motor activity features resistant to the employment status were used (the strongest feature being time variation of intradaily variability, Cohen’s d=1.33), 79% of the subjects (sensitivity=76%, specificity=81%) were correctly classified.CONCLUSION: A machine learning actigraphy-based model was capable of distinguishing between inter-episode BD patients and HC solely on the basis of motor activity. The classification remained valid even when features influenced by employment status were omitted. The findings suggest that temporal variability of actigraphic parameters may provide discriminative power for differentiating between BD patients and HC while being less affected by employment status.

  • Název v anglickém jazyce

    Motor activity patterns can distinguish between interepisode bipolar disorder patients and healthy controls

  • Popis výsledku anglicky

    OBJECTIVE: Bipolar disorder (BD) is linked to circadian rhythm disruptions resulting in aberrant motor activity patterns. We aimed to explore whether motor activity alone, as assessed by longitudinal actigraphy, can be used to classify accurately BD patients and healthy controls into their respective groups.METHODS: Ninety-day actigraphy records from 25 inter-episode BD patients (i.e. Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) &lt;15) and 25 sex- and age-matched healthy controls (HC), were used in order to identify latent actigraphic biomarkers capable of discriminating between BD patients and HC. Mean values and time-variations of a set of standard actigraphy features were analysed and further validated using the random forest classifier. RESULTS: Using all actigraphy features, this method correctly assigned 88% (sensitivity=85%, specificity=91%) of BD patients and HC to their respective group. The classification success may be confounded by differences in employment between BD patients and HC. When motor activity features resistant to the employment status were used (the strongest feature being time variation of intradaily variability, Cohen’s d=1.33), 79% of the subjects (sensitivity=76%, specificity=81%) were correctly classified.CONCLUSION: A machine learning actigraphy-based model was capable of distinguishing between inter-episode BD patients and HC solely on the basis of motor activity. The classification remained valid even when features influenced by employment status were omitted. The findings suggest that temporal variability of actigraphic parameters may provide discriminative power for differentiating between BD patients and HC while being less affected by employment status.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    CNS Spectrums

  • ISSN

    1092-8529

  • e-ISSN

    2165-6509

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    82-92

  • Kód UT WoS článku

    000754571100012

  • EID výsledku v databázi Scopus

    2-s2.0-85092059678