Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14110%2F15%3A00087443" target="_blank" >RIV/00216224:14110/15:00087443 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.pscychresns.2015.03.004" target="_blank" >http://dx.doi.org/10.1016/j.pscychresns.2015.03.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.pscychresns.2015.03.004" target="_blank" >10.1016/j.pscychresns.2015.03.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
Popis výsledku v původním jazyce
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance.
Název v anglickém jazyce
Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
Popis výsledku anglicky
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FH - Neurologie, neurochirurgie, neurovědy
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NT13359" target="_blank" >NT13359: Pokročilé metody rozpoznávání MR obrazů mozku pro podporu diagnostiky neuropsychiatrických poruch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Psychiatry Research: Neuroimaging
ISSN
0925-4927
e-ISSN
—
Svazek periodika
232
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
IE - Irsko
Počet stran výsledku
13
Strana od-do
237-249
Kód UT WoS článku
000354552900006
EID výsledku v databázi Scopus
—