Arrhythmia disease classification using a higher-order neural unit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F15%3A00233063" target="_blank" >RIV/68407700:21220/15:00233063 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/FGCT.2015.7300253" target="_blank" >http://dx.doi.org/10.1109/FGCT.2015.7300253</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/FGCT.2015.7300253" target="_blank" >10.1109/FGCT.2015.7300253</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Arrhythmia disease classification using a higher-order neural unit
Popis výsledku v původním jazyce
This paper presents a quadratic neural unit with error backpropagation learning algorithm to classify electrocardiogram arrhythmia disease. The electrocardiogram arrhythmia classification scheme consists of data acquisition, feature extraction, feature reduction, and a quadratic neural unit classifier to discriminate three different types of arrhythmia. A total of 44 records were obtained from MIT-BIH arrhythmia database to test the efficiency of arrhythmia disease classification method, the obtained results were a specificity of 97.60 % and a sensitivity of 97.05 %. The best accuracy classification rate obtained using the presented approach has been of 98.16 %.
Název v anglickém jazyce
Arrhythmia disease classification using a higher-order neural unit
Popis výsledku anglicky
This paper presents a quadratic neural unit with error backpropagation learning algorithm to classify electrocardiogram arrhythmia disease. The electrocardiogram arrhythmia classification scheme consists of data acquisition, feature extraction, feature reduction, and a quadratic neural unit classifier to discriminate three different types of arrhythmia. A total of 44 records were obtained from MIT-BIH arrhythmia database to test the efficiency of arrhythmia disease classification method, the obtained results were a specificity of 97.60 % and a sensitivity of 97.05 %. The best accuracy classification rate obtained using the presented approach has been of 98.16 %.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The Fourth International Conference on Future Generation Communication Technologies (FGCT 2015)
ISBN
978-1-4799-8267-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
85-90
Název nakladatele
IEE
Místo vydání
London
Místo konání akce
Luton
Datum konání akce
29. 7. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000378416600019