Monitoring of Cardiac Arrhythmia Patterns by Adaptive Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00315063" target="_blank" >RIV/68407700:21220/17:00315063 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-49109-7_86" target="_blank" >http://dx.doi.org/10.1007/978-3-319-49109-7_86</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-49109-7_86" target="_blank" >10.1007/978-3-319-49109-7_86</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monitoring of Cardiac Arrhythmia Patterns by Adaptive Analysis
Popis výsledku v původním jazyce
In this paper, a study and development of a monitoring adaptive system based on dynamic quadratic neural unit are presented. The system is trained with a recurrent learning method, sample-by-sample in real time. This model will help to the prediction of possible cardiac arrhythmias in patients between 23 to 89 years old, age range of the electrocardiogram signals obtained from the Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database. By means of the implementation of this adaptive monitoring system the model is capable of processing heart rate signals in real time and to recognize patterns that predict cardiac arrhythmias up to 1 second ahead. The Dynamic Quadratic Neural Unit in real time has demonstrated presenting greater efficiency and precision comparing with multilayer perceptron-type neural networks for pattern classification and prediction; in addition, this architecture has demonstrated in developed research, to be superior to other different type of adaptive architectures.
Název v anglickém jazyce
Monitoring of Cardiac Arrhythmia Patterns by Adaptive Analysis
Popis výsledku anglicky
In this paper, a study and development of a monitoring adaptive system based on dynamic quadratic neural unit are presented. The system is trained with a recurrent learning method, sample-by-sample in real time. This model will help to the prediction of possible cardiac arrhythmias in patients between 23 to 89 years old, age range of the electrocardiogram signals obtained from the Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database. By means of the implementation of this adaptive monitoring system the model is capable of processing heart rate signals in real time and to recognize patterns that predict cardiac arrhythmias up to 1 second ahead. The Dynamic Quadratic Neural Unit in real time has demonstrated presenting greater efficiency and precision comparing with multilayer perceptron-type neural networks for pattern classification and prediction; in addition, this architecture has demonstrated in developed research, to be superior to other different type of adaptive architectures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ADVANCES ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING
ISBN
978-3-319-49108-0
ISSN
2367-4512
e-ISSN
—
Počet stran výsledku
10
Strana od-do
885-894
Název nakladatele
Springer International Publishing AG
Místo vydání
Cham
Místo konání akce
Soonchunhyang Univ, Asan,
Datum konání akce
5. 11. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000402860200086