Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F23%3A43921103" target="_blank" >RIV/00023752:_____/23:43921103 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journalbipolardisorders.springeropen.com/articles/10.1186/s40345-023-00297-5" target="_blank" >https://journalbipolardisorders.springeropen.com/articles/10.1186/s40345-023-00297-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s40345-023-00297-5" target="_blank" >10.1186/s40345-023-00297-5</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models

  • Popis výsledku v původním jazyce

    BackgroundSeveral studies have reported on the feasibility of electronic (e-)monitoring using computers or smartphones in patients with mental disorders, including bipolar disorder (BD). While studies on e-monitoring have examined the role of demographic factors, such as age, gender, or socioeconomic status and use of health apps, to our knowledge, no study has examined clinical characteristics that might impact adherence with e-monitoring in patients with BD. We analyzed adherence to e-monitoring in patients with BD who participated in an ongoing e-monitoring study and evaluated whether demographic and clinical factors would predict adherence.MethodsEighty-seven participants with BD in different phases of the illness were included. Patterns of adherence for wearable use, daily and weekly self-rating scales over 15 months were analyzed to identify adherence trajectories using growth mixture models (GMM). Multinomial logistic regression models were fitted to compute the effects of predictors on GMM classes.ResultsOverall adherence rates were 79.5% for the wearable; 78.5% for weekly self-ratings; and 74.6% for daily self-ratings. GMM identified three latent class subgroups: participants with (i) perfect; (ii) good; and (iii) poor adherence. On average, 34.4% of participants showed &quot;perfect&quot; adherence; 37.1% showed &quot;good&quot; adherence; and 28.2% showed poor adherence to all three measures. Women, participants with a history of suicide attempt, and those with a history of inpatient admission were more likely to belong to the group with perfect adherence.ConclusionsParticipants with higher illness burden (e.g., history of admission to hospital, history of suicide attempts) have higher adherence rates to e-monitoring. They might see e-monitoring as a tool for better documenting symptom change and better managing their illness, thus motivating their engagement.

  • Název v anglickém jazyce

    Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models

  • Popis výsledku anglicky

    BackgroundSeveral studies have reported on the feasibility of electronic (e-)monitoring using computers or smartphones in patients with mental disorders, including bipolar disorder (BD). While studies on e-monitoring have examined the role of demographic factors, such as age, gender, or socioeconomic status and use of health apps, to our knowledge, no study has examined clinical characteristics that might impact adherence with e-monitoring in patients with BD. We analyzed adherence to e-monitoring in patients with BD who participated in an ongoing e-monitoring study and evaluated whether demographic and clinical factors would predict adherence.MethodsEighty-seven participants with BD in different phases of the illness were included. Patterns of adherence for wearable use, daily and weekly self-rating scales over 15 months were analyzed to identify adherence trajectories using growth mixture models (GMM). Multinomial logistic regression models were fitted to compute the effects of predictors on GMM classes.ResultsOverall adherence rates were 79.5% for the wearable; 78.5% for weekly self-ratings; and 74.6% for daily self-ratings. GMM identified three latent class subgroups: participants with (i) perfect; (ii) good; and (iii) poor adherence. On average, 34.4% of participants showed &quot;perfect&quot; adherence; 37.1% showed &quot;good&quot; adherence; and 28.2% showed poor adherence to all three measures. Women, participants with a history of suicide attempt, and those with a history of inpatient admission were more likely to belong to the group with perfect adherence.ConclusionsParticipants with higher illness burden (e.g., history of admission to hospital, history of suicide attempts) have higher adherence rates to e-monitoring. They might see e-monitoring as a tool for better documenting symptom change and better managing their illness, thus motivating their engagement.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30215 - Psychiatry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Bipolar Disorders

  • ISSN

    2194-7511

  • e-ISSN

    2194-7511

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    9

  • Strana od-do

    "Article Number: 18"

  • Kód UT WoS článku

    000989161800001

  • EID výsledku v databázi Scopus

    2-s2.0-85159685930