Sign patterns symbolization and its use in improved dependence test for complex network inference
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00023752%3A_____%2F23%3A43921139" target="_blank" >RIV/00023752:_____/23:43921139 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/23:00576550
Výsledek na webu
<a href="https://pubs.aip.org/aip/cha/article/33/8/083131/2906646/Sign-patterns-symbolization-and-its-use-in" target="_blank" >https://pubs.aip.org/aip/cha/article/33/8/083131/2906646/Sign-patterns-symbolization-and-its-use-in</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0160868" target="_blank" >10.1063/5.0160868</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sign patterns symbolization and its use in improved dependence test for complex network inference
Popis výsledku v původním jazyce
Inferring the dependence structure of complex networks from the observation of the non-linear dynamics of its components is among the common, yet far from resolved challenges faced when studying real-world complex systems. While a range of methods using the ordinal patterns framework has been proposed to particularly tackle the problem of dependence inference in the presence of non-linearity, they come with important restrictions in the scope of their application. Hereby, we introduce the sign patterns as an extension of the ordinal patterns, arising from a more flexible symbolization which is able to encode longer sequences with lower number of symbols. After transforming time series into sequences of sign patterns, we derive improved estimates for statistical quantities by considering necessary constraints on the probabilities of occurrence of combinations of symbols in a symbolic process with prohibited transitions. We utilize these to design an asymptotic chi-squared test to evaluate dependence between two time series and then apply it to the construction of climate networks, illustrating that the developed method can capture both linear and non-linear dependences, while avoiding bias present in the naive application of the often used Pearson correlation coefficient or mutual information.
Název v anglickém jazyce
Sign patterns symbolization and its use in improved dependence test for complex network inference
Popis výsledku anglicky
Inferring the dependence structure of complex networks from the observation of the non-linear dynamics of its components is among the common, yet far from resolved challenges faced when studying real-world complex systems. While a range of methods using the ordinal patterns framework has been proposed to particularly tackle the problem of dependence inference in the presence of non-linearity, they come with important restrictions in the scope of their application. Hereby, we introduce the sign patterns as an extension of the ordinal patterns, arising from a more flexible symbolization which is able to encode longer sequences with lower number of symbols. After transforming time series into sequences of sign patterns, we derive improved estimates for statistical quantities by considering necessary constraints on the probabilities of occurrence of combinations of symbols in a symbolic process with prohibited transitions. We utilize these to design an asymptotic chi-squared test to evaluate dependence between two time series and then apply it to the construction of climate networks, illustrating that the developed method can capture both linear and non-linear dependences, while avoiding bias present in the naive application of the often used Pearson correlation coefficient or mutual information.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-17211S" target="_blank" >GA21-17211S: Síťové modely komplexních systémů: od korelačních grafů k informačním hypergrafům</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
1089-7682
Svazek periodika
33
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
"Article number: 083131"
Kód UT WoS článku
001051787700001
EID výsledku v databázi Scopus
2-s2.0-85169610880