Assessing Serial Dependence in Ordinal Patterns Processes Using Chi-squared Tests with Application to EEG Data Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560397" target="_blank" >RIV/67985807:_____/22:00560397 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00023752:_____/22:43920917
Výsledek na webu
<a href="https://dx.doi.org/10.1063/5.0096954" target="_blank" >https://dx.doi.org/10.1063/5.0096954</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0096954" target="_blank" >10.1063/5.0096954</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing Serial Dependence in Ordinal Patterns Processes Using Chi-squared Tests with Application to EEG Data Analysis
Popis výsledku v původním jazyce
We extend Elsinger’s work on chi-squared tests for independence using ordinal patterns and investigate the general class of m-dependent ordinal patterns processes, to which belong ordinal patterns processes derived from random walk, white noise, and moving average processes. We describe chi-squared asymptotically distributed statistics for such processes that take into account necessary constraints on ordinal patterns probabilities and propose a test for m-dependence, with which we are able to quantify the range of serial dependence in a process. We apply the test to epilepsy electroencephalography time series data and observe shorter m-dependence associated with seizures, suggesting that the range of serial dependence decreases during those events. The ordinal patterns symbolization transforms a real-valued time series into a sequence of symbols called ordinal patterns, which simplifies statistical analysis while keeping information about up and down movements. Despite the increasing interest in its application due to the need to understand complex nonlinear dynamics based on observed time series, analytical properties of the distributions of ordinal patterns frequencies are not yet fully known. By modeling a sequence of ordinal patterns as the output of a symbolic process, we study m-dependent ordinal patterns processes, i.e., symbolic processes in the space of ordinal patterns whose maximum dependence range is m. We derive chi-squared asymptotically distributed statistics for this class of processes and use them to evaluate the range of serial dependence in general ordinal patterns processes. Applying the results to analyze epilepsy electroencephalography (EEG) time series, we find that seizure events are characterized by a decrease in the range of serial dependence of the ordinal dynamics.
Název v anglickém jazyce
Assessing Serial Dependence in Ordinal Patterns Processes Using Chi-squared Tests with Application to EEG Data Analysis
Popis výsledku anglicky
We extend Elsinger’s work on chi-squared tests for independence using ordinal patterns and investigate the general class of m-dependent ordinal patterns processes, to which belong ordinal patterns processes derived from random walk, white noise, and moving average processes. We describe chi-squared asymptotically distributed statistics for such processes that take into account necessary constraints on ordinal patterns probabilities and propose a test for m-dependence, with which we are able to quantify the range of serial dependence in a process. We apply the test to epilepsy electroencephalography time series data and observe shorter m-dependence associated with seizures, suggesting that the range of serial dependence decreases during those events. The ordinal patterns symbolization transforms a real-valued time series into a sequence of symbols called ordinal patterns, which simplifies statistical analysis while keeping information about up and down movements. Despite the increasing interest in its application due to the need to understand complex nonlinear dynamics based on observed time series, analytical properties of the distributions of ordinal patterns frequencies are not yet fully known. By modeling a sequence of ordinal patterns as the output of a symbolic process, we study m-dependent ordinal patterns processes, i.e., symbolic processes in the space of ordinal patterns whose maximum dependence range is m. We derive chi-squared asymptotically distributed statistics for this class of processes and use them to evaluate the range of serial dependence in general ordinal patterns processes. Applying the results to analyze epilepsy electroencephalography (EEG) time series, we find that seizure events are characterized by a decrease in the range of serial dependence of the ordinal dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
1089-7682
Svazek periodika
32
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
073126
Kód UT WoS článku
000901372800004
EID výsledku v databázi Scopus
2-s2.0-85135218899