Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Assessing Serial Dependence in Ordinal Patterns Processes Using Chi-squared Tests with Application to EEG Data Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F22%3A00560397" target="_blank" >RIV/67985807:_____/22:00560397 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00023752:_____/22:43920917

  • Výsledek na webu

    <a href="https://dx.doi.org/10.1063/5.0096954" target="_blank" >https://dx.doi.org/10.1063/5.0096954</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0096954" target="_blank" >10.1063/5.0096954</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Assessing Serial Dependence in Ordinal Patterns Processes Using Chi-squared Tests with Application to EEG Data Analysis

  • Popis výsledku v původním jazyce

    We extend Elsinger’s work on chi-squared tests for independence using ordinal patterns and investigate the general class of m-dependent ordinal patterns processes, to which belong ordinal patterns processes derived from random walk, white noise, and moving average processes. We describe chi-squared asymptotically distributed statistics for such processes that take into account necessary constraints on ordinal patterns probabilities and propose a test for m-dependence, with which we are able to quantify the range of serial dependence in a process. We apply the test to epilepsy electroencephalography time series data and observe shorter m-dependence associated with seizures, suggesting that the range of serial dependence decreases during those events. The ordinal patterns symbolization transforms a real-valued time series into a sequence of symbols called ordinal patterns, which simplifies statistical analysis while keeping information about up and down movements. Despite the increasing interest in its application due to the need to understand complex nonlinear dynamics based on observed time series, analytical properties of the distributions of ordinal patterns frequencies are not yet fully known. By modeling a sequence of ordinal patterns as the output of a symbolic process, we study m-dependent ordinal patterns processes, i.e., symbolic processes in the space of ordinal patterns whose maximum dependence range is m. We derive chi-squared asymptotically distributed statistics for this class of processes and use them to evaluate the range of serial dependence in general ordinal patterns processes. Applying the results to analyze epilepsy electroencephalography (EEG) time series, we find that seizure events are characterized by a decrease in the range of serial dependence of the ordinal dynamics.

  • Název v anglickém jazyce

    Assessing Serial Dependence in Ordinal Patterns Processes Using Chi-squared Tests with Application to EEG Data Analysis

  • Popis výsledku anglicky

    We extend Elsinger’s work on chi-squared tests for independence using ordinal patterns and investigate the general class of m-dependent ordinal patterns processes, to which belong ordinal patterns processes derived from random walk, white noise, and moving average processes. We describe chi-squared asymptotically distributed statistics for such processes that take into account necessary constraints on ordinal patterns probabilities and propose a test for m-dependence, with which we are able to quantify the range of serial dependence in a process. We apply the test to epilepsy electroencephalography time series data and observe shorter m-dependence associated with seizures, suggesting that the range of serial dependence decreases during those events. The ordinal patterns symbolization transforms a real-valued time series into a sequence of symbols called ordinal patterns, which simplifies statistical analysis while keeping information about up and down movements. Despite the increasing interest in its application due to the need to understand complex nonlinear dynamics based on observed time series, analytical properties of the distributions of ordinal patterns frequencies are not yet fully known. By modeling a sequence of ordinal patterns as the output of a symbolic process, we study m-dependent ordinal patterns processes, i.e., symbolic processes in the space of ordinal patterns whose maximum dependence range is m. We derive chi-squared asymptotically distributed statistics for this class of processes and use them to evaluate the range of serial dependence in general ordinal patterns processes. Applying the results to analyze epilepsy electroencephalography (EEG) time series, we find that seizure events are characterized by a decrease in the range of serial dependence of the ordinal dynamics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chaos

  • ISSN

    1054-1500

  • e-ISSN

    1089-7682

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    073126

  • Kód UT WoS článku

    000901372800004

  • EID výsledku v databázi Scopus

    2-s2.0-85135218899