Problems of potential theory and methods of their solution in refined studies on Earth's gravity field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F09%3A%230001588" target="_blank" >RIV/00025615:_____/09:#0001588 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Problems of potential theory and methods of their solution in refined studies on Earth's gravity field
Popis výsledku v původním jazyce
The aim of the paper is to show typical problems that are associated with the solution of Poisson?s and Laplace?s equation in gravity field studies based on classical terrestrial as well as modern satellite gravity field data. The use of the method of integral equations and the Green?s function method is approached first. Subsequently the weak solution and variational methods are discussed. The approach is more flexible in general. Some of its fundamental properties are mentioned. In contrast to the classical concept the solution is represented by means of a suitable function basis. This leads to Galerkin?s approximations and a solution of a rather large system of linear equations. Possibilities of using the concept of boundary-value problems in combining the terrestrial and satellite gravity field data are discussed too. As a rule, however, the problems are overdetermined by nature. Therefore, an optimization approach has to be applied together with the methods mentioned above.
Název v anglickém jazyce
Problems of potential theory and methods of their solution in refined studies on Earth's gravity field
Popis výsledku anglicky
The aim of the paper is to show typical problems that are associated with the solution of Poisson?s and Laplace?s equation in gravity field studies based on classical terrestrial as well as modern satellite gravity field data. The use of the method of integral equations and the Green?s function method is approached first. Subsequently the weak solution and variational methods are discussed. The approach is more flexible in general. Some of its fundamental properties are mentioned. In contrast to the classical concept the solution is represented by means of a suitable function basis. This leads to Galerkin?s approximations and a solution of a rather large system of linear equations. Possibilities of using the concept of boundary-value problems in combining the terrestrial and satellite gravity field data are discussed too. As a rule, however, the problems are overdetermined by nature. Therefore, an optimization approach has to be applied together with the methods mentioned above.
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC506" target="_blank" >LC506: Recentní dynamika Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Bratislava
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
—