Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On the Construction of Green’s Function when Combining Terrestrial Data and Global Models for Earth’s Gravity Field Recovery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F19%3AN0000041" target="_blank" >RIV/00025615:_____/19:N0000041 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15639.pdf" target="_blank" >https://meetingorganizer.copernicus.org/EGU2019/EGU2019-15639.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On the Construction of Green’s Function when Combining Terrestrial Data and Global Models for Earth’s Gravity Field Recovery

  • Popis výsledku v původním jazyce

    The combination of terrestrial and satellite data is one of the challenges in gravity field modelling today. Satellite and terrestrial data complement each other. Here we confine ourselves to the combination of terrestrial gravity measurements and Earth’s gravity field models. Potential theory and optimization concepts have an important position in solving this problem. In this contribution we focus on a boundary value problem which is formulated for a solution domain represented by a spherical layer bounded by two concentric spheres. In particular we follow the classical solution concept and construct the respective Green’s function that enables to exploit available terrestrial gravity data and data deduced from Earth’s gravity field models. The transition to the real boundary is then iterative by nature. The starting point is a transformation of spatial coordinates. It offers a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s partial differential equation governing the solution. A system of general curvilinear coordinates, such that the surface of the Earth is imbedded in the family of coordinate surfaces is applied. The constructed Green’s function in combination with successive approximations enables to approach the solution of Laplace’s partial differential equation expressed in the system of new coordinates. Finally, also the analytical continuation of the solution is discussed with a particular view to its harmonic branch and regularity at infinity. The reasoning leads to optimization concepts considered in the paper.

  • Název v anglickém jazyce

    On the Construction of Green’s Function when Combining Terrestrial Data and Global Models for Earth’s Gravity Field Recovery

  • Popis výsledku anglicky

    The combination of terrestrial and satellite data is one of the challenges in gravity field modelling today. Satellite and terrestrial data complement each other. Here we confine ourselves to the combination of terrestrial gravity measurements and Earth’s gravity field models. Potential theory and optimization concepts have an important position in solving this problem. In this contribution we focus on a boundary value problem which is formulated for a solution domain represented by a spherical layer bounded by two concentric spheres. In particular we follow the classical solution concept and construct the respective Green’s function that enables to exploit available terrestrial gravity data and data deduced from Earth’s gravity field models. The transition to the real boundary is then iterative by nature. The starting point is a transformation of spatial coordinates. It offers a possibility for an alternative between the boundary complexity and the complexity of the coefficients of Laplace’s partial differential equation governing the solution. A system of general curvilinear coordinates, such that the surface of the Earth is imbedded in the family of coordinate surfaces is applied. The constructed Green’s function in combination with successive approximations enables to approach the solution of Laplace’s partial differential equation expressed in the system of new coordinates. Finally, also the analytical continuation of the solution is discussed with a particular view to its harmonic branch and regularity at infinity. The reasoning leads to optimization concepts considered in the paper.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů