Domain transformation and the iteration solution of boundary value problems in gravity field studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002197" target="_blank" >RIV/00025615:_____/15:#0002197 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Domain transformation and the iteration solution of boundary value problems in gravity field studies
Popis výsledku v původním jazyce
In this paper, when treating boundary value problems in gravity field studies, the geometry of the physical surface of the Earth is seen in relation to the structure of the Laplace operator. This approach may be applied to classical problems as well as to combinations of terrestrial and satellite data. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. For instance the Laplace operator has a relatively simple structure in terms of spherical or ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from a sphere or an oblate ellipsoid of revolution, even if these are optimally fitted. The situation may be more convenient in a system of general curvilinear coordinates such that t
Název v anglickém jazyce
Domain transformation and the iteration solution of boundary value problems in gravity field studies
Popis výsledku anglicky
In this paper, when treating boundary value problems in gravity field studies, the geometry of the physical surface of the Earth is seen in relation to the structure of the Laplace operator. This approach may be applied to classical problems as well as to combinations of terrestrial and satellite data. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. For instance the Laplace operator has a relatively simple structure in terms of spherical or ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from a sphere or an oblate ellipsoid of revolution, even if these are optimally fitted. The situation may be more convenient in a system of general curvilinear coordinates such that t
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-34595S" target="_blank" >GA14-34595S: Matematické metody pro studium tíhového pole Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Praha
Název nakladatele resp. objednatele
International Union of Geodesy and Geophysics
Verze
—
Identifikační číslo nosiče
—