Reproducing kernel in gravity field studies and its numerical implementation for the exterior of an ellipsoid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F11%3A%230001786" target="_blank" >RIV/00025615:_____/11:#0001786 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reproducing kernel in gravity field studies and its numerical implementation for the exterior of an ellipsoid
Popis výsledku v původním jazyce
According to the well-known conventions the vertical datum is defined as the equipotential surface for which the Earth gravity potential is constant. The aim of this contribution is to focus on differential geometry properties of equipotential surfaces and their relation to problems of physical nature in vertical datum definition. Within this concept one can apply a number of tools. The discussion mainly rests on the use of tensor calculus and also exterior differential forms. In particular the importance of Weingarten?s theorem in the theory of surfaces will be emphasized together with its essential tie to Brun?s equation (for gravity gradient), which is well known in physical geodesy. Also the role of Christoffel?s theorem will be mentioned. These considerations are of constructive nature and numerically their content will be demonstrated through the use of high performance and accuracy computations for gravity field models represented in terms of high degree and order expansions int
Název v anglickém jazyce
Reproducing kernel in gravity field studies and its numerical implementation for the exterior of an ellipsoid
Popis výsledku anglicky
According to the well-known conventions the vertical datum is defined as the equipotential surface for which the Earth gravity potential is constant. The aim of this contribution is to focus on differential geometry properties of equipotential surfaces and their relation to problems of physical nature in vertical datum definition. Within this concept one can apply a number of tools. The discussion mainly rests on the use of tensor calculus and also exterior differential forms. In particular the importance of Weingarten?s theorem in the theory of surfaces will be emphasized together with its essential tie to Brun?s equation (for gravity gradient), which is well known in physical geodesy. Also the role of Christoffel?s theorem will be mentioned. These considerations are of constructive nature and numerically their content will be demonstrated through the use of high performance and accuracy computations for gravity field models represented in terms of high degree and order expansions int
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC506" target="_blank" >LC506: Recentní dynamika Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Melbourne
Název nakladatele resp. objednatele
International Association of Geodesy
Verze
—
Identifikační číslo nosiče
—