Differential geometry of equipotential surfaces and its relation to parameters of Earth?s gravity field models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F15%3A%230002198" target="_blank" >RIV/00025615:_____/15:#0002198 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential geometry of equipotential surfaces and its relation to parameters of Earth?s gravity field models
Popis výsledku v původním jazyce
According to adopted conventions the notion of an equipotential surface of the Earth?s gravity potential is of key importance for vertical datum definition. The aim of this contribution is to focus on differential geometry properties of equipotential surfaces and their relation to parameters of Earth?s gravity field models. Within this concept one can apply a number of tools. The discussion mainly rests on the use of Weingarten?s theorem that has an important role in the theory of surfaces and in parallel an essential tie to Brun?s equation (for gravity gradient) well known in physical geodesy. Also Christoffel?s theorem and its use will be mentioned. These considerations are of constructive nature and numerically their content will be demonstrated forhigh degree and order gravity field models. The results will be interpreted globally and also in merging segments expressing regional and local features of the gravity field of the Earth. They may contribute to the knowledge important fo
Název v anglickém jazyce
Differential geometry of equipotential surfaces and its relation to parameters of Earth?s gravity field models
Popis výsledku anglicky
According to adopted conventions the notion of an equipotential surface of the Earth?s gravity potential is of key importance for vertical datum definition. The aim of this contribution is to focus on differential geometry properties of equipotential surfaces and their relation to parameters of Earth?s gravity field models. Within this concept one can apply a number of tools. The discussion mainly rests on the use of Weingarten?s theorem that has an important role in the theory of surfaces and in parallel an essential tie to Brun?s equation (for gravity gradient) well known in physical geodesy. Also Christoffel?s theorem and its use will be mentioned. These considerations are of constructive nature and numerically their content will be demonstrated forhigh degree and order gravity field models. The results will be interpreted globally and also in merging segments expressing regional and local features of the gravity field of the Earth. They may contribute to the knowledge important fo
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-34595S" target="_blank" >GA14-34595S: Matematické metody pro studium tíhového pole Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
—
Název nakladatele resp. objednatele
International Union of Geodesy and Geophysics
Verze
—
Identifikační číslo nosiče
—