On the reproducing kernel for an oblate ellipsoid of revolution and its use in gravity field studies: Series representation, summation and numerical treatment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001895" target="_blank" >RIV/00025615:_____/13:#0001895 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the reproducing kernel for an oblate ellipsoid of revolution and its use in gravity field studies: Series representation, summation and numerical treatment
Popis výsledku v původním jazyce
In the introductory part the importance of the topic for gravity field studies is outlined. Some concepts and tools often used for the representation of the solution of the related boundary value problems are mentioned. Subsequently a weak formulation ofNeumann?s problem is considered with emphasis on a particular choice of function basis generated by the reproducing kernel of the respective Hilbert space of functions. The use of the reproducing kernel offers a very straightforward way leading to entries in Galekin?s matrix of the respective linear system for unknown scalar coefficients. The paper then focuses on the construction of the reproducing kernel for the solution domain given by the exterior of an oblate ellipsoid of revolution. The fundamental problem, however, is the possibility of practical summation of the series that represents the kernel. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is not a straightforward analogue to th
Název v anglickém jazyce
On the reproducing kernel for an oblate ellipsoid of revolution and its use in gravity field studies: Series representation, summation and numerical treatment
Popis výsledku anglicky
In the introductory part the importance of the topic for gravity field studies is outlined. Some concepts and tools often used for the representation of the solution of the related boundary value problems are mentioned. Subsequently a weak formulation ofNeumann?s problem is considered with emphasis on a particular choice of function basis generated by the reproducing kernel of the respective Hilbert space of functions. The use of the reproducing kernel offers a very straightforward way leading to entries in Galekin?s matrix of the respective linear system for unknown scalar coefficients. The paper then focuses on the construction of the reproducing kernel for the solution domain given by the exterior of an oblate ellipsoid of revolution. The fundamental problem, however, is the possibility of practical summation of the series that represents the kernel. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is not a straightforward analogue to th
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Vienna
Název nakladatele resp. objednatele
European Geosciences Union
Verze
—
Identifikační číslo nosiče
—