Green?s Function, Reproducing Kernel and Galerkin?s Matrix for the Exterior of an Ellipsoid: Application in Gravity Field Studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F10%3A%230001716" target="_blank" >RIV/00025615:_____/10:#0001716 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Green?s Function, Reproducing Kernel and Galerkin?s Matrix for the Exterior of an Ellipsoid: Application in Gravity Field Studies
Popis výsledku v původním jazyce
In the introductory part the importance of the topic for gravity field studies is outlined. Concepts and tools used for the representation of solutions of boundary value problems are mentioned. A weak formulation of Neumann?s problem is considered with emphasis on function bases generated by the reproducing kernel of Hilbert?s space of functions. The paper then focuses on the reproducing kernel for the solution domain given by the exterior of an oblate ellipsoid of revolution. First its exact structureis derived by means of the apparatus of ellipsoidal harmonics. In this case the structure of the kernel, similarly as of the entries of Galerkin?s matrix, becomes rather complex. Therefore, an approximation of ellipsoidal harmonics based on an approximation version of Legendre?s ordinary differential equation (limit layer approach) is used. A numerical implementation of the exact structure of the reproducing kernel is mention as a driving impulse of running investigations.
Název v anglickém jazyce
Green?s Function, Reproducing Kernel and Galerkin?s Matrix for the Exterior of an Ellipsoid: Application in Gravity Field Studies
Popis výsledku anglicky
In the introductory part the importance of the topic for gravity field studies is outlined. Concepts and tools used for the representation of solutions of boundary value problems are mentioned. A weak formulation of Neumann?s problem is considered with emphasis on function bases generated by the reproducing kernel of Hilbert?s space of functions. The paper then focuses on the reproducing kernel for the solution domain given by the exterior of an oblate ellipsoid of revolution. First its exact structureis derived by means of the apparatus of ellipsoidal harmonics. In this case the structure of the kernel, similarly as of the entries of Galerkin?s matrix, becomes rather complex. Therefore, an approximation of ellipsoidal harmonics based on an approximation version of Legendre?s ordinary differential equation (limit layer approach) is used. A numerical implementation of the exact structure of the reproducing kernel is mention as a driving impulse of running investigations.
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC506" target="_blank" >LC506: Recentní dynamika Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Vídeň
Název nakladatele resp. objednatele
European Geoscience Union
Verze
—
Identifikační číslo nosiče
—