Geometrical properties of equipotential surfaces and their numerical studies for high resolution Earth?s gravity field models expresses in ellipsoidal harmonics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F11%3A%230001785" target="_blank" >RIV/00025615:_____/11:#0001785 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometrical properties of equipotential surfaces and their numerical studies for high resolution Earth?s gravity field models expresses in ellipsoidal harmonics
Popis výsledku v původním jazyce
In gravity field studies the complex geometry of the Earth?s surface makes the solution of potential problems rather demanding. Therefore, Green?s functions, integral equations or linear systems associated with direct methods are usually constructed forsolution domains slightly simplified compared to reality. The measure of the simplification affects the convergence of iterations applied in the solution. Often a sphere is used, but this seems not adequate for a global approach. In the paper the construction of a reproducing kernel in Hilbert?s space of functions harmonic in the exterior of an ellipsoid of revolution is discussed. Ellipsoidal harmonics offer the corresponding apparatus, but the structure of the kernel becomes rather complex. Two possibilities to overcome the problem are considered. First an approximation of ellipsoidal harmonics based on a simplified version of Legendre?s ordinary differential equation is used. Subsequently an exact numerical approach is applied as an
Název v anglickém jazyce
Geometrical properties of equipotential surfaces and their numerical studies for high resolution Earth?s gravity field models expresses in ellipsoidal harmonics
Popis výsledku anglicky
In gravity field studies the complex geometry of the Earth?s surface makes the solution of potential problems rather demanding. Therefore, Green?s functions, integral equations or linear systems associated with direct methods are usually constructed forsolution domains slightly simplified compared to reality. The measure of the simplification affects the convergence of iterations applied in the solution. Often a sphere is used, but this seems not adequate for a global approach. In the paper the construction of a reproducing kernel in Hilbert?s space of functions harmonic in the exterior of an ellipsoid of revolution is discussed. Ellipsoidal harmonics offer the corresponding apparatus, but the structure of the kernel becomes rather complex. Two possibilities to overcome the problem are considered. First an approximation of ellipsoidal harmonics based on a simplified version of Legendre?s ordinary differential equation is used. Subsequently an exact numerical approach is applied as an
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC506" target="_blank" >LC506: Recentní dynamika Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Melbourne
Název nakladatele resp. objednatele
International Union of Geodesy and Geophysics
Verze
—
Identifikační číslo nosiče
—