An approximation of ellipsoidal harmonics and the construction of Galerkin's matrix in studies on Earth's gravitational potential
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F09%3A%230001585" target="_blank" >RIV/00025615:_____/09:#0001585 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An approximation of ellipsoidal harmonics and the construction of Galerkin's matrix in studies on Earth's gravitational potential
Popis výsledku v původním jazyce
In gravity field studies the complex structure of the Earth?s surface makes the solution of potential problems rather demanding. Green?s functions, integral kernels, reproducing kernels of the respective Hilbert spaces, kernels associated with the integral equation method, but also linear (e.g. Galerkin?s) systems resulting from the use of direct methods are usually constructed for a boundary that is simplified in comparison with reality. The simplification has an essential impact on the convergence ofiteration procedures applied in this connection. Often a sphere is used, but it seems this is not an adequate choice. Attempt is made to work with an ellipsoid of revolution. Ellipsoidal harmonics come into play. The structure of the kernels mentioned above similarly as of the entries of Galerkin?s matrix becomes rather complex. Therefore, an approximation of ellipsoidal harmonics is used. The idea is applied to the construction of Green?s function, reproducing kernel and Galarkin?s matr
Název v anglickém jazyce
An approximation of ellipsoidal harmonics and the construction of Galerkin's matrix in studies on Earth's gravitational potential
Popis výsledku anglicky
In gravity field studies the complex structure of the Earth?s surface makes the solution of potential problems rather demanding. Green?s functions, integral kernels, reproducing kernels of the respective Hilbert spaces, kernels associated with the integral equation method, but also linear (e.g. Galerkin?s) systems resulting from the use of direct methods are usually constructed for a boundary that is simplified in comparison with reality. The simplification has an essential impact on the convergence ofiteration procedures applied in this connection. Often a sphere is used, but it seems this is not an adequate choice. Attempt is made to work with an ellipsoid of revolution. Ellipsoidal harmonics come into play. The structure of the kernels mentioned above similarly as of the entries of Galerkin?s matrix becomes rather complex. Therefore, an approximation of ellipsoidal harmonics is used. The idea is applied to the construction of Green?s function, reproducing kernel and Galarkin?s matr
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC506" target="_blank" >LC506: Recentní dynamika Země</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Vídeň
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
—