Boundary problems of mathematical physics in Earth?s gravity field studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F13%3A%230001901" target="_blank" >RIV/00025615:_____/13:#0001901 - isvavai.cz</a>
Výsledek na webu
<a href="http://leibnizsozietaet.de/ehrenkolloquium-anlaesslich-des-80-geburtstages-von-mls-helmut-moritz-kurzbericht/#more-6645" target="_blank" >http://leibnizsozietaet.de/ehrenkolloquium-anlaesslich-des-80-geburtstages-von-mls-helmut-moritz-kurzbericht/#more-6645</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boundary problems of mathematical physics in Earth?s gravity field studies
Popis výsledku v původním jazyce
Studies on Earth?s gravity field enable to learn more about our planer. The motivation considered here comes primarily from geodetic applications. We particularly focus on the related mathematics and mathematical tools that form the basis for this research. Historical milestones and famous figures of science in this field are briefly recalled equally as the notion of potential and its first definition. The theory of boundary value problems for elliptic partial differential equations of second order, inparticular for Laplace?s and Poisson?s equation, offer a natural basis for gravity field studies, especially in case they rest on terrestrial measurements. Various kinds of free, fixed and mixed boundary value problems are considered. Concerning the linear problems, the classical as well as the weak solution concept is applied. Free boundary value problems are non-linear and are discussed separately. The complex structure of the Earth?s surface makes the solution of the boundary problems
Název v anglickém jazyce
Boundary problems of mathematical physics in Earth?s gravity field studies
Popis výsledku anglicky
Studies on Earth?s gravity field enable to learn more about our planer. The motivation considered here comes primarily from geodetic applications. We particularly focus on the related mathematics and mathematical tools that form the basis for this research. Historical milestones and famous figures of science in this field are briefly recalled equally as the notion of potential and its first definition. The theory of boundary value problems for elliptic partial differential equations of second order, inparticular for Laplace?s and Poisson?s equation, offer a natural basis for gravity field studies, especially in case they rest on terrestrial measurements. Various kinds of free, fixed and mixed boundary value problems are considered. Concerning the linear problems, the classical as well as the weak solution concept is applied. Free boundary value problems are non-linear and are discussed separately. The complex structure of the Earth?s surface makes the solution of the boundary problems
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0090" target="_blank" >ED1.1.00/02.0090: NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Berlin
Název nakladatele resp. objednatele
Leibniz-Societät der Wissenschaften zu Berlin e.V.
Verze
—
Identifikační číslo nosiče
—