Analytical Continuation in Physical Geodesy Constructed by Means of Tools and Formulas Related to an Ellipsoid of Revolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F14%3A%230002083" target="_blank" >RIV/00025615:_____/14:#0002083 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical Continuation in Physical Geodesy Constructed by Means of Tools and Formulas Related to an Ellipsoid of Revolution
Popis výsledku v původním jazyce
In physical geodesy mathematical tools applied for solving problems of potential theory are often essentially associated with the concept of the so-called spherical approximation (interpreted as a mapping). The same holds true for the method of analytical (harmonic) continuation which is frequently considered as a means suitable for converting the ground gravity anomalies or disturbances to corresponding values on the level surface that is close to the original boundary. In the development and implementation of this technique the key role has the representation of a harmonic function by means of the famous Poisson?s formula and the construction of a radial derivative operator on the basis of this formula. In this contribution an attempt is made to avoid spherical approximation mentioned above and to develop mathematical tools that allow implementation of the concept of analytical continuation also in a more general case, in particular for converting the ground gravity anomalies or dist
Název v anglickém jazyce
Analytical Continuation in Physical Geodesy Constructed by Means of Tools and Formulas Related to an Ellipsoid of Revolution
Popis výsledku anglicky
In physical geodesy mathematical tools applied for solving problems of potential theory are often essentially associated with the concept of the so-called spherical approximation (interpreted as a mapping). The same holds true for the method of analytical (harmonic) continuation which is frequently considered as a means suitable for converting the ground gravity anomalies or disturbances to corresponding values on the level surface that is close to the original boundary. In the development and implementation of this technique the key role has the representation of a harmonic function by means of the famous Poisson?s formula and the construction of a radial derivative operator on the basis of this formula. In this contribution an attempt is made to avoid spherical approximation mentioned above and to develop mathematical tools that allow implementation of the concept of analytical continuation also in a more general case, in particular for converting the ground gravity anomalies or dist
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Vienna
Název nakladatele resp. objednatele
European Geosciences Union
Verze
—
Identifikační číslo nosiče
—