Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of the one-step integration method for determination of the regional gravimetric geoid

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955551" target="_blank" >RIV/49777513:23520/19:43955551 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00190-019-01272-8" target="_blank" >https://doi.org/10.1007/s00190-019-01272-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00190-019-01272-8" target="_blank" >10.1007/s00190-019-01272-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of the one-step integration method for determination of the regional gravimetric geoid

  • Popis výsledku v původním jazyce

    The regional gravimetric geoid solved using boundary-value problems of the potential theory is usually determined in two computational steps: (1) downward continuing ground gravity data onto the geoid using inverse Poisson’s integral equation in a mass-free space and (2) evaluating geoidal heights by applying Stokes integral to downward continued gravity. In this contribution, the two integration steps are combined in one step and the so-called one-step integration method in spherical approximation is implemented to compute the regional gravimetric geoid model. Advantages of using the one-step integration method instead of the two integration steps include less computational cost, more stable numerical computation and better utilization of input ground gravity data (reduced in each integration step to avoid edge effects). A discrete form of the one-step integral equation is used to convert mean values of ground gravity anomalies into mean values of geoidal heights. To evaluate mean values of the integral kernel in the vicinity of the computation point, a fast and numerically accurate analytical formula is proposed using planar approximation. The proposed formula is tested to determine the regional gravimetric geoid of the Auvergne test area, France. Results show a good agreement of the estimated geoid with geoidal heights estimated at GNSS-levelling reference points, with the standard deviation for the difference of 3.3 cm. Considering the uncertainty of geoidal heights derived at the GNSS/levelling reference points, one can conclude the geoid models computed by the one-step and two-step integration methods have negligible differences. Thus, the one-step method can be recommended for regional geoid modelling with its methodological and numerical advantages.

  • Název v anglickém jazyce

    Application of the one-step integration method for determination of the regional gravimetric geoid

  • Popis výsledku anglicky

    The regional gravimetric geoid solved using boundary-value problems of the potential theory is usually determined in two computational steps: (1) downward continuing ground gravity data onto the geoid using inverse Poisson’s integral equation in a mass-free space and (2) evaluating geoidal heights by applying Stokes integral to downward continued gravity. In this contribution, the two integration steps are combined in one step and the so-called one-step integration method in spherical approximation is implemented to compute the regional gravimetric geoid model. Advantages of using the one-step integration method instead of the two integration steps include less computational cost, more stable numerical computation and better utilization of input ground gravity data (reduced in each integration step to avoid edge effects). A discrete form of the one-step integral equation is used to convert mean values of ground gravity anomalies into mean values of geoidal heights. To evaluate mean values of the integral kernel in the vicinity of the computation point, a fast and numerically accurate analytical formula is proposed using planar approximation. The proposed formula is tested to determine the regional gravimetric geoid of the Auvergne test area, France. Results show a good agreement of the estimated geoid with geoidal heights estimated at GNSS-levelling reference points, with the standard deviation for the difference of 3.3 cm. Considering the uncertainty of geoidal heights derived at the GNSS/levelling reference points, one can conclude the geoid models computed by the one-step and two-step integration methods have negligible differences. Thus, the one-step method can be recommended for regional geoid modelling with its methodological and numerical advantages.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-06943S" target="_blank" >GA18-06943S: Teorie zpracování gradientů geopotenciálu vyšších řádů a jejich použití v geodézii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF GEODESY

  • ISSN

    0949-7714

  • e-ISSN

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    14

  • Strana od-do

    1631-1644

  • Kód UT WoS článku

    000500186800025

  • EID výsledku v databázi Scopus

    2-s2.0-85068236113