Application of the one-step integration method for determination of the regional gravimetric geoid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955551" target="_blank" >RIV/49777513:23520/19:43955551 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00190-019-01272-8" target="_blank" >https://doi.org/10.1007/s00190-019-01272-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-019-01272-8" target="_blank" >10.1007/s00190-019-01272-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of the one-step integration method for determination of the regional gravimetric geoid
Popis výsledku v původním jazyce
The regional gravimetric geoid solved using boundary-value problems of the potential theory is usually determined in two computational steps: (1) downward continuing ground gravity data onto the geoid using inverse Poisson’s integral equation in a mass-free space and (2) evaluating geoidal heights by applying Stokes integral to downward continued gravity. In this contribution, the two integration steps are combined in one step and the so-called one-step integration method in spherical approximation is implemented to compute the regional gravimetric geoid model. Advantages of using the one-step integration method instead of the two integration steps include less computational cost, more stable numerical computation and better utilization of input ground gravity data (reduced in each integration step to avoid edge effects). A discrete form of the one-step integral equation is used to convert mean values of ground gravity anomalies into mean values of geoidal heights. To evaluate mean values of the integral kernel in the vicinity of the computation point, a fast and numerically accurate analytical formula is proposed using planar approximation. The proposed formula is tested to determine the regional gravimetric geoid of the Auvergne test area, France. Results show a good agreement of the estimated geoid with geoidal heights estimated at GNSS-levelling reference points, with the standard deviation for the difference of 3.3 cm. Considering the uncertainty of geoidal heights derived at the GNSS/levelling reference points, one can conclude the geoid models computed by the one-step and two-step integration methods have negligible differences. Thus, the one-step method can be recommended for regional geoid modelling with its methodological and numerical advantages.
Název v anglickém jazyce
Application of the one-step integration method for determination of the regional gravimetric geoid
Popis výsledku anglicky
The regional gravimetric geoid solved using boundary-value problems of the potential theory is usually determined in two computational steps: (1) downward continuing ground gravity data onto the geoid using inverse Poisson’s integral equation in a mass-free space and (2) evaluating geoidal heights by applying Stokes integral to downward continued gravity. In this contribution, the two integration steps are combined in one step and the so-called one-step integration method in spherical approximation is implemented to compute the regional gravimetric geoid model. Advantages of using the one-step integration method instead of the two integration steps include less computational cost, more stable numerical computation and better utilization of input ground gravity data (reduced in each integration step to avoid edge effects). A discrete form of the one-step integral equation is used to convert mean values of ground gravity anomalies into mean values of geoidal heights. To evaluate mean values of the integral kernel in the vicinity of the computation point, a fast and numerically accurate analytical formula is proposed using planar approximation. The proposed formula is tested to determine the regional gravimetric geoid of the Auvergne test area, France. Results show a good agreement of the estimated geoid with geoidal heights estimated at GNSS-levelling reference points, with the standard deviation for the difference of 3.3 cm. Considering the uncertainty of geoidal heights derived at the GNSS/levelling reference points, one can conclude the geoid models computed by the one-step and two-step integration methods have negligible differences. Thus, the one-step method can be recommended for regional geoid modelling with its methodological and numerical advantages.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-06943S" target="_blank" >GA18-06943S: Teorie zpracování gradientů geopotenciálu vyšších řádů a jejich použití v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF GEODESY
ISSN
0949-7714
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
1631-1644
Kód UT WoS článku
000500186800025
EID výsledku v databázi Scopus
2-s2.0-85068236113