The effect of the noise, spatial distribution, and interpolation of ground gravity data on uncertainties of estimated geoidal heights
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952647" target="_blank" >RIV/49777513:23520/18:43952647 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs11200-018-1013-6.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11200-018-1013-6.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11200-018-1013-6" target="_blank" >10.1007/s11200-018-1013-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The effect of the noise, spatial distribution, and interpolation of ground gravity data on uncertainties of estimated geoidal heights
Popis výsledku v původním jazyce
The uncertainties of the geoidal heights estimated from ground gravity data caused by their spatial distribution and noise are investigated in this study. To test these effects, the geoidal heights are estimated from synthetic ground gravity data using the Stokes-Helmert approach. Five different magnitudes of the random noise in ground gravity data and three types of their spatial distribution are considered in the study, namely grid, semi-grid and random. The noise propagation is estimated for the two major computational steps of the Stokes-Helmert approach, i.e., the downward continuation of ground gravity and Stokes’s integration. Numerical results show that in order to achieve the geoid accurate to one centimetre, the ground gravity data should be distributed on the grid or semi-grid with the average angular distance less than 2 arc-min. If they are randomly distributed (scattered gravity points), the one-centimetre geoid cannot be estimated if the average angular distance between scattered gravity points is larger than 1 arc-min. Besides, the noise of the gravity data for the tree types of their spatial distribution should be below 1 mGal to estimate the one-centimetre geoid. The advantage of interpolating scattered gravity points onto the regular grid, rather than using them directly, is also investigated in this study. Numerical test shows that it is always worth interpolating the scattered points to the regular grid except if the scattered gravity points are sparser than 5 arc-min.
Název v anglickém jazyce
The effect of the noise, spatial distribution, and interpolation of ground gravity data on uncertainties of estimated geoidal heights
Popis výsledku anglicky
The uncertainties of the geoidal heights estimated from ground gravity data caused by their spatial distribution and noise are investigated in this study. To test these effects, the geoidal heights are estimated from synthetic ground gravity data using the Stokes-Helmert approach. Five different magnitudes of the random noise in ground gravity data and three types of their spatial distribution are considered in the study, namely grid, semi-grid and random. The noise propagation is estimated for the two major computational steps of the Stokes-Helmert approach, i.e., the downward continuation of ground gravity and Stokes’s integration. Numerical results show that in order to achieve the geoid accurate to one centimetre, the ground gravity data should be distributed on the grid or semi-grid with the average angular distance less than 2 arc-min. If they are randomly distributed (scattered gravity points), the one-centimetre geoid cannot be estimated if the average angular distance between scattered gravity points is larger than 1 arc-min. Besides, the noise of the gravity data for the tree types of their spatial distribution should be below 1 mGal to estimate the one-centimetre geoid. The advantage of interpolating scattered gravity points onto the regular grid, rather than using them directly, is also investigated in this study. Numerical test shows that it is always worth interpolating the scattered points to the regular grid except if the scattered gravity points are sparser than 5 arc-min.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-06943S" target="_blank" >GA18-06943S: Teorie zpracování gradientů geopotenciálu vyšších řádů a jejich použití v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Geophysica et Geodaetica
ISSN
0039-3169
e-ISSN
1573-1626
Svazek periodika
63
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
34-54
Kód UT WoS článku
000459512900002
EID výsledku v databázi Scopus
2-s2.0-85058858355