Data requirements for the determination of a sub-centimetre geoid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968427" target="_blank" >RIV/49777513:23520/23:43968427 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0012825223000156" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012825223000156</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.earscirev.2023.104326" target="_blank" >10.1016/j.earscirev.2023.104326</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data requirements for the determination of a sub-centimetre geoid
Popis výsledku v původním jazyce
Recent applications in Earth sciences require geoid models to be determined with a sub-centimetre internal error. Regional models of the geoid are usually determined using discrete gravity values measured at and/or outside the Earth, and global models of the Earth gravity field and topographic surface. In this article, we review previous studies that (to some extent) discuss the estimation of the geoid internal error, and provide formulations and methodologies required for a comprehensive formal propagation of errors of gravity data and global models through a mathematical model used for regional geoid determination. The mathematical model is based on combining the inverse Poisson integral equation and the Hotine integral transform in the Helmert harmonic space; also called the one-step integration method. Calculations and tests are performed in one of the most challenging test areas ("the Colorado test area") using ground and airborne gravity observations, a global digital terrain model (DTM) for topographic effects on gravity and the geoid, and a global Earth gravitational model (EGM) for the long-wavelength components of gravity and the geoid.There are three main contributors to the total internal error of the geoid height, namely those associated with the EGM (for estimating the long-wavelength geoid height), DTM heights (for evaluation of the topographic effects on observed gravity and the geoid height), and gravity observations (for determining the short -wavelength components of the geoid height).
Název v anglickém jazyce
Data requirements for the determination of a sub-centimetre geoid
Popis výsledku anglicky
Recent applications in Earth sciences require geoid models to be determined with a sub-centimetre internal error. Regional models of the geoid are usually determined using discrete gravity values measured at and/or outside the Earth, and global models of the Earth gravity field and topographic surface. In this article, we review previous studies that (to some extent) discuss the estimation of the geoid internal error, and provide formulations and methodologies required for a comprehensive formal propagation of errors of gravity data and global models through a mathematical model used for regional geoid determination. The mathematical model is based on combining the inverse Poisson integral equation and the Hotine integral transform in the Helmert harmonic space; also called the one-step integration method. Calculations and tests are performed in one of the most challenging test areas ("the Colorado test area") using ground and airborne gravity observations, a global digital terrain model (DTM) for topographic effects on gravity and the geoid, and a global Earth gravitational model (EGM) for the long-wavelength components of gravity and the geoid.There are three main contributors to the total internal error of the geoid height, namely those associated with the EGM (for estimating the long-wavelength geoid height), DTM heights (for evaluation of the topographic effects on observed gravity and the geoid height), and gravity observations (for determining the short -wavelength components of the geoid height).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth-Science Reviews
ISSN
0012-8252
e-ISSN
1872-6828
Svazek periodika
239
Číslo periodika v rámci svazku
APR 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
1-18
Kód UT WoS článku
000957876000001
EID výsledku v databázi Scopus
2-s2.0-85151928378