Ellipsoidal Effects, Modelling and Technique Refinements in High Accuracy Quasigeoid Computation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F14%3A%230002085" target="_blank" >RIV/00025615:_____/14:#0002085 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ellipsoidal Effects, Modelling and Technique Refinements in High Accuracy Quasigeoid Computation
Popis výsledku v původním jazyce
The paper focuses on methodological and computational aspects associated with high accuracy quasigeoid modelling. Accuracy demands driven by GNSS levelling applications are substantially taken into consideration. The concept of the so-called gravimetricboundary value problem was used as the basis for the determination of the disturbing potential from gravity disturbances. In the approach developed the Green?s function constructed for the exterior of an oblate ellipsoid of revolution is essentially usedfor the solution of the problem. The mathematical apparatus is constructed consistently. The idea of spherical approximation was avoided. This also means that the kernel used for the integral representation of the solution is an ellipsoidal analogue tothe so-called Hotine-Koch function well-known in physical geodesy. Fundamental steps leading from an ellipsoidal harmonics series representation of the kernel into its closed form expression are explained. Legendre elliptic integrals were
Název v anglickém jazyce
Ellipsoidal Effects, Modelling and Technique Refinements in High Accuracy Quasigeoid Computation
Popis výsledku anglicky
The paper focuses on methodological and computational aspects associated with high accuracy quasigeoid modelling. Accuracy demands driven by GNSS levelling applications are substantially taken into consideration. The concept of the so-called gravimetricboundary value problem was used as the basis for the determination of the disturbing potential from gravity disturbances. In the approach developed the Green?s function constructed for the exterior of an oblate ellipsoid of revolution is essentially usedfor the solution of the problem. The mathematical apparatus is constructed consistently. The idea of spherical approximation was avoided. This also means that the kernel used for the integral representation of the solution is an ellipsoidal analogue tothe so-called Hotine-Koch function well-known in physical geodesy. Fundamental steps leading from an ellipsoidal harmonics series representation of the kernel into its closed form expression are explained. Legendre elliptic integrals were
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Shanghai
Název nakladatele resp. objednatele
International Association of Geodesy
Verze
—
Identifikační číslo nosiče
—