Laplacián a topografie při iteračním řešení okrajové úlohy fyzikální geodézie
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00025615%3A_____%2F14%3A%230002087" target="_blank" >RIV/00025615:_____/14:#0002087 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Laplacián a topografie při iteračním řešení okrajové úlohy fyzikální geodézie
Popis výsledku v původním jazyce
Vztah mezi popisem fyzického povrchu Země a strukturou Laplaceova operátoru nabízí zajímavý pohled na řešení okrajových problémů teorie potenciálu ve fyzikální geodézii. Podobně jako v jiných oblastech techniky a matematické fyziky také zde může býti využita transformace souřadnic k posouzení a volbě alternativy mezi složitostí hranice a složitostí koeficientů parciální diferenciální rovnice, kterou musí splňovat hledané řešení studovaného problému, v daném případě poruchový potenciál. Laplaceův operátor má poměrně jednoduchou strukturu pokud je vyjádřen ve sférických souřadnicích, které se často požívají v geodézii. Fyzický povrch Země se však podstatně liší od (geocentrické) sféry, byť s optimálně voleným poloměrem, která reprezentuje jednu ze souřadnicových ploch v systému sférických souřadnic. Situace může ale býti výhodnější v systému obecných křivočarých souřadnic, a to takových, že fyzický povrch Země je vnořen do systému souřadnicových ploch. Na druhé straně je však struktura L
Název v anglickém jazyce
Laplacian and Topography in the Iterative Solution of the Boundary Value Problem of Physical Geodesy
Popis výsledku anglicky
A relation between the description of the physical surface of the Earth and the structure of the Laplace operator seems to be an important moment in the solution of boundary value problems in physical geodesy. Here, similarly as in other branches of engineering and mathematical physics a transformation of coordinates may be used to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. In a sense, in the theory of the figure of the Earth the problem is of an intrinsic nature. For instance the Laplace operator has a relatively simple structure in terms of spherical coordinates which are frequently used in geodesy. However, the physical surface of the Earthsubstantially differs from a (geocentric) sphere of (even optimally chosen) radius. The situation may be more convenient in a system of curvilinear coordinates such that the physical surface of the Earth is imbedded in the family of coord
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Zámek Kozel
Název nakladatele resp. objednatele
Oddělení geomatiky Fakulty aplikovaných věd Západočeské univeryity
Verze
—
Identifikační číslo nosiče
—